Lecture 1 - Introduction
Lecture 2 - First Order systems
Lecture 3 - Classification of Equilibrium points
Lecture 4 - Lipschitz Functions
Lecture 5 - Existence/uniqueness theorems
Lecture 6 - Existence/uniqueness of solutions to differential equations
Lecture 7 - Lyapunov theorem on stability
Lecture 8 - Extension of Lyapunov's Theorem in different contexts
Lecture 9 - LaSalle's Invariance principle, Barbashin and Krasovski theorems, periodic orbits
Lecture 10 - Bendixson criterion and Poincare-Bendixson criterion. Example
Lecture 11 - Bendixson and Poincare-Bendixson criteria van-der-Pol Oscillator
Lecture 12 - Scilab simulation of Lotka Volterra predator prey model, van-der-Pol Oscillator Review of linearization, operating point/operating trajectory
Lecture 13 - Signals, operators
Lecture 14 - Norms of signals, systems (operators), Finite gain L2 stable
Lecture 15 - Nyquist plots and Nyquist criterion for stability
Lecture 16 - Interconnection between linear system & non-linearity, passive filters
Lecture 17 - Passive filters, Dissipation equality, positive real lemma
Lecture 18 - Positive real lemma proof
Lecture 19 - Definition for positive realness and Kalman Yakubovich-Popov Theorem
Lecture 20 - Kalman-Yakubovich-Popov Lemma/theorem and memoryless nonlinearities
Lecture 21 - Loop tranformations and circle criterion
Lecture 22 - Nonlinearities based on circle criterion
Lecture 23 - Limit cycles
Lecture 24 - Popov criterion continuous, frequency-domain theorem
Lecture 25 - Popov criterion continuous, frequency-domain theorem
Lecture 26 - Describing function method
Lecture 27 - Describing Function
Lecture 28 - Describing
Lecture 29 - Describing
Lecture 30 - Describing functions
Lecture 31 - Describing functions
Lecture 32 - Describing functions for nonlinearities
Lecture 33 - Ideal relay with Hysteresis and dead zone
Lecture 34 - Dynamical systems on manifolds-1
Lecture 35 - Dynamical systems on manifolds-2
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Power System Dynamics and Control

Subject Co-ordinator - Dr. A.M. Kulkarni

Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction
Lecture 2 - Introduction
Lecture 3 - Analysis of Dynamical Systems
Lecture 4 - Analysis of Dynamical Systems (Continued.)
Lecture 5 - Analysis of LINEAR Time Invariant Dynamical Systems
Lecture 6 - Analysis of LINEAR Time Invariant Dynamical Systems (Continued.)
Lecture 7 - Stiff Systems, Multi Time Scale Modeling
Lecture 8 - Numerical Integration
Lecture 9 - Numerical Integration (Continued.)
Lecture 10 - Numerical Integration (Continued.)
Lecture 11 - Modeling of Synchronous Machines
Lecture 12 - Modeling of Synchronous Machines (Continued.)
Lecture 13 - Modeling of Synchronous Machines (Continued.)
Lecture 14 - Modeling of Synchronous Machines. dq0 transformation (Continued.)
Lecture 15 - Modeling of Synchronous Machines. Standard Parameters
Lecture 16 - Modeling of Synchronous Machines. Standard Parameters
Lecture 17 - Synchronous Generator Models using Standard Parameters
Lecture 18 - Synchronous Generator Models using Standard Parameters. PER UNIT REPRESENTATION
Lecture 19 - Open Circuit Response of a Synchronous Generator
Lecture 20 - Synchronous Machine Modeling. Short Circuit Analysis (Continued.)
Lecture 21 - Synchronous Machine Modeling. Short Circuit Analysis (Continued.) Synchronization of a Synchronous Machine (Continued.)
Lecture 22 - Synchronization of a Synchronous Machine (Continued.)
Lecture 23 - Simplified Synchronous Machine Models
Lecture 24 - Excitation Systems
Lecture 25 - Excitation System Modeling
Lecture 26 - Excitation System Modeling. Automatic Voltage Regulator
Lecture 27 - Excitation System Modeling. Automatic Voltage Regulator (Continued.)
Lecture 28 - Excitation System Modeling. Automatic Voltage Regulator (Simulation)
Lecture 29 - Excitation System Modeling. Automatic Voltage Regulator (Simulation) â宮 (Continued.)

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Excitation System Modeling. Automatic Voltage Regulator. Linearized Analysis
Lecture 31 - Load Modeling
Lecture 32 - Induction Machines, Transmission Lines
Lecture 33 - Transmission Lines. Prime Mover Systems
Lecture 34 - Transmission Lines (Continued.) Prime Mover Systems
Lecture 35 - Prime Mover Systems. Stability in Integrated Power System
Lecture 36 - Stability in Integrated Power System
Lecture 37 - Two Machine System (Continued.)
Lecture 38 - Stability in Integrated Power System
Lecture 39 - Frequency/Angular Stability Programs. Stability Phenomena
Lecture 40 - Voltage Stability Example (Continued.). Fast Transients
Lecture 41 - Torsional Transients
Lecture 42 - Sub-Synchronous Resonance. Stability Improvement
Lecture 43 - Stability Improvement
Lecture 44 - Stability Improvement. Power System Stabilizers
Lecture 45 - Stability Improvement (Large Disturbance Stability)
NPTEL Video Course - Electrical Engineering - Control Engineering (Prof. S.D. Agashe)

Subject Co-ordinator - Prof. S.D. Agashe

Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - The Control Problem
Lecture 2 - Some More Examples
Lecture 3 - Different Kinds of Control Systems
Lecture 4 - History of Feedback
Lecture 5 - Modern Control Problems
Lecture 6 - DC Motor Speed Control
Lecture 7 - System Modelling, Analogy
Lecture 8 - Causes of System Error
Lecture 9 - Calculation of Error
Lecture 10 - Control System Sensitivity
Lecture 11 - Automatic Control of DC Motor
Lecture 12 - Proportional Control
Lecture 13 - Non-Unity Feedback
Lecture 14 - Signal-Flow Graph
Lecture 15 - Mason's Gain Formula
Lecture 16 - Signal-Flow Graph for DC Motor Control
Lecture 17 - Steady-State Calculations
Lecture 18 - Differential Equation Model and Laplace Transformation Model
Lecture 19 - D-Operator Method
Lecture 20 - Second-Order System Response
Lecture 21 - Frequency Response
Lecture 22 - Laplace Transformation Theorems
Lecture 23 - Final Value Theorem
Lecture 24 - Transfer Function and Pole-Zero Diagram
Lecture 25 - 'Good' Poles and 'Bad' Poles
Lecture 26 - Signal Flow Graph with Transfer Functions
Lecture 27 - s-Domain and t-Domain
Lecture 28 - Second-Order System Response in s-Domain
Lecture 29 - Integral Feedback

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Root-Locus Method
Lecture 31 - Root-Locus Rules
Lecture 32 - Asymptotes of Root Locus
Lecture 33 - Routh Array
Lecture 34 - Singular Cases
Lecture 35 - Closed Loop Poles
Lecture 36 - Controller in the Forwarded Path
Lecture 37 - Mapping of Control in the Complex-Plane
Lecture 38 - Encirclement by a Curve
Lecture 39 - Nyquist Criterion
Lecture 40 - Application of the Nyquist Criterion
Lecture 41 - Polar Plot and Bode Plots
Lecture 42 - Logarithmic Scale for Frequency
Lecture 43 - 'Asymptotic' DB Gain
Lecture 44 - Compensating Network
Lecture 45 - Nichols' Chart
Lecture 46 - Time Domain Methods of Analysis and Design
Lecture 47 - State-Variable Equations
Lecture 30 - Power Electronics
Lecture 31 - Power Electronics
Lecture 32 - Power Electronics
Lecture 33 - Power Electronics
Lecture 34 - Power Electronics
Lecture 35 - Power Electronics
Lecture 36 - Power Electronics
Lecture 37 - Power Electronics
Lecture 38 - Power Electronics
Lecture 39 - Power Electronics
Lecture 40 - Power Electronics
Lecture 41 - Power Electronics
Lecture 42 - Power Electronics
Lecture 43 - Power Electronics

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
NPTEL Video Course - Electrical Engineering - Fabrication of Silicon VLSI Circuits using the MOS technology

Subject Co-ordinator - Prof. A.N. Chandorkar

Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction Micro to Nano A Journey into Integrated Circuit Technology
Lecture 2 - Introduction Micro to Nano A Journey into Integrated Circuit Technology
Lecture 3 - Crystal Properties and Silicon Growth
Lecture 4 - Crystal Properties and Silicon Growth (Continued...)
Lecture 5 - IC Fab Labs and Fabrication of IC
Lecture 6 - Diffusion
Lecture 7 - Diffusion (Continued...)
Lecture 8 - Solid State Diffusion
Lecture 9 - Solid State Diffusion (Continued...)
Lecture 10 - Solid State Diffusion (Continued...)
Lecture 11 - Thermal Oxidation of Silicons
Lecture 12 - Thermal Oxidation of Silicons
Lecture 13 - Thermal Oxidation of Silicons
Lecture 14 - Thermal Oxidation of Silicons (Continued...)
Lecture 15 - Thermal Oxidation of Silicons (Continued...)
Lecture 16 - Lithography
Lecture 17 - Lithography
Lecture 18 - Lithography
Lecture 19 - ION Implantation
Lecture 20 - ION Implantation
Lecture 21 - ION Implantation and Silicon IC Processing Flow for CMOS Technology
Lecture 22 - ION Implantation and Silicon IC Processing Flow for CMOS Technology
Lecture 23 - Silicon IC Processing Flow for CMOS Technology
Lecture 24 - Thin Film Deposition
Lecture 25 - Thin Film Deposition
Lecture 26 - Thin Film Deposition
Lecture 27 - Thin Film Deposition and Etching in VLSI Processing
Lecture 28 - Etching in VLSI Processing and Back-End Technology

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Course - Electrical Engineering - NOC: Computational Electromagnetics and Applications

Subject Co-ordinator - Prof. Krish Sankaran

Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Lecture 1
Lecture 2 - Lecture 2
Lecture 3 - Lecture 3
Lecture 4 - Exercise 1
Lecture 5 - Exercise 2
Lecture 6 - Exercise 3
Lecture 7 - Lab Tour 1
Lecture 8 - Summary week 1
Lecture 9 - Lecture 4
Lecture 10 - Lecture 5
Lecture 11 - Exercise 4
Lecture 12 - Exercise 5
Lecture 13 - Exercise 6
Lecture 14 - Summary Week 2
Lecture 15 - Lecture 6
Lecture 16 - Lecture 7
Lecture 17 - Lecture 8
Lecture 18 - Exercise 7
Lecture 19 - Exercise 8
Lecture 20 - Summary Week 3
Lecture 21 - Lecture 9
Lecture 22 - Lecture 10
Lecture 23 - Lecture 11
Lecture 24 - Lecture 12
Lecture 25 - Lecture 13
Lecture 26 - Lecture 14
Lecture 27 - Exercise 9
Lecture 28 - Lab Tour - 2
Lecture 29 - Summary Week 4

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Lecture 15
Lecture 31 - Lecture 16
Lecture 32 - Lecture 17
Lecture 33 - Lecture 18
Lecture 34 - Exercise 10
Lecture 35 - Summary week 5
Lecture 36 - Lecture 19
Lecture 37 - Lecture 20
Lecture 38 - Lecture 21
Lecture 39 - Lecture 22
Lecture 40 - Exercise 11
Lecture 41 - Summary week 6
Lecture 42 - Exercise 12
Lecture 43 - Exercise 13
Lecture 44 - Exercise 14
Lecture 45 - Exercise 15
Lecture 46 - Exercise 16
Lecture 47 - Exercise 17
Lecture 48 - Summary week 7
Lecture 49 - Lecture 23
Lecture 50 - Lecture 24
Lecture 51 - Lecture 25
Lecture 52 - Exercise 18
Lecture 53 - Exercise 19
Lecture 54 - Lab tour 3
Lecture 55 - Summary week 8
Lecture 56 - Lecture 26
Lecture 57 - Lecture 27
Lecture 58 - Lecture 28
Lecture 59 - Lecture 29
Lecture 60 - Lecture 30
Lecture 61 - Lecture 31
Lecture 62 - Lab tour 4
Lecture 63 - Summary week 9
Lecture 64 - Lecture 32
Lecture 65 - Lecture 33
Lecture 66 - Lecture 34
Lecture 67 - Lecture 35
Lecture 68 - Exercise 20

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 69 - Lab tour 5
Lecture 70 - Summary week 10
Lecture 71 - Lecture 36
Lecture 72 - Lecture 37
Lecture 73 - Lecture 38
Lecture 74 - Lecture 39
Lecture 75 - Lecture 40
Lecture 76 - Summary week 11
Lecture 77 - Lecture 41
Lecture 78 - Lecture 42
Lecture 79 - Lecture 43
Lecture 80 - Lecture 44
Lecture 81 - Exercise 21
Lecture 82 - Exercise 22
Lecture 83 - Summary week 12
Lecture 1 - A brief history of electronics
Lecture 2 - Superposition
Lecture 3 - Useful circuit techniques - 1
Lecture 4 - Useful circuit techniques - 2
Lecture 5 - Phasors - 1
Lecture 6 - Phasors - 2
Lecture 7 - RC/RL circuits in time domain - 1
Lecture 8 - RC/RL circuits in time domain - 2
Lecture 9 - RC/RL circuits in time domain - 3
Lecture 10 - RC/RL circuits in time domain - 4
Lecture 11 - RC/RL circuits in time domain - 5
Lecture 12 - Simulation of RC circuit
Lecture 13 - Diode circuits - 1
Lecture 14 - Diode circuits - 2
Lecture 15 - Diode circuits - 3
Lecture 16 - Diode circuits - 4
Lecture 17 - Diode circuits - 5
Lecture 18 - Diode circuits - 6
Lecture 19 - Diode rectifiers - 1
Lecture 20 - Diode rectifiers - 2
Lecture 21 - Diode rectifiers - 3
Lecture 22 - Bipolar Junction Transistor - 1
Lecture 23 - Bipolar Junction Transistor - 2
Lecture 24 - Bipolar Junction Transistor - 3
Lecture 25 - BJT amplifier - 1
Lecture 26 - BJT amplifier - 2
Lecture 27 - BJT amplifier - 3
Lecture 28 - BJT amplifier - 4
Lecture 29 - BJT amplifier - 5
Lecture 30 - BJT amplifier - 6
Lecture 31 - BJT amplifier - 7
Lecture 32 - Introduction to op-amps
Lecture 33 - Op-amp circuits - 1
Lecture 34 - Op-amp circuits - 2
Lecture 35 - Op-amp circuits - 3
Lecture 36 - Difference amplifier
Lecture 37 - Instrumentation amplifier - 1
Lecture 38 - Instrumentation amplifier - 2
Lecture 39 - Op-amp nonidealities - 1
Lecture 40 - Op-amp nonidealities - 2
Lecture 41 - Bode plots - 1
Lecture 42 - Bode plots - 2
Lecture 43 - Bode plots - 3
Lecture 44 - Op-amp filters
Lecture 45 - Simulation of op-amp filter
Lecture 46 - Precision rectifiers - 1
Lecture 47 - Precision rectifiers - 2
Lecture 48 - Precision rectifiers - 3
Lecture 49 - Simulation of triangle-to-sine converter
Lecture 50 - Schmitt triggers - 1
Lecture 51 - Schmitt triggers - 2
Lecture 52 - Schmitt triggers - 3
Lecture 53 - Sinusoidal oscillators - 1
Lecture 54 - Sinusoidal oscillators - 2
Lecture 55 - Introduction to digital circuits
Lecture 56 - Boolean algebra
Lecture 57 - Karnaugh maps
Lecture 58 - Combinatorial circuits - 1
Lecture 59 - Combinatorial circuits - 2
Lecture 60 - Combinatorial circuits - 3
Lecture 61 - Introduction to sequential circuits
Lecture 62 - Latch and flip-flop
Lecture 63 - JK flip-flop
Lecture 64 - D flip-flop
Lecture 65 - Shift registers
Lecture 66 - Counters - 1
Lecture 67 - Counters - 2
Lecture 68 - Simulation of a synchronous counter

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 69 - 555 timer
Lecture 70 - Digital-to-analog conversion - 1
Lecture 71 - Digital-to-analog conversion - 2
Lecture 72 - Analog-to-digital conversion
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC: Antennas

Subject Co-ordinator - Prof. Girish Kumar
Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Antenna Introduction - I
Lecture 2 - Antenna Introduction - II
Lecture 3 - Antenna Introduction - III
Lecture 4 - Antenna Fundamentals - I
Lecture 5 - Antenna Fundamentals - II
Lecture 6 - Antenna Radiation Hazards - I
Lecture 7 - Antenna Radiation Hazards - II
Lecture 8 - Dipole Antennas - I
Lecture 9 - Dipole Antennas - II
Lecture 10 - Dipole Antennas - III
Lecture 11 - Monopole Antennas - I
Lecture 12 - Monopole Antennas - II
Lecture 13 - Loop Antennas
Lecture 14 - Slot Antennas
Lecture 15 - Linear Arrays - I
Lecture 16 - Linear Arrays - II
Lecture 17 - Linear Arrays - III
Lecture 18 - Planar Arrays
Lecture 19 - Microstrip Antennas (MSA)
Lecture 20 - Rectangular MSA
Lecture 21 - MSA Parametric Analysis - I
Lecture 22 - MSA Parametric Analysis - II
Lecture 23 - Circular MSA
Lecture 24 - Broadband MSA - I
Lecture 25 - Broadband MSA - II
Lecture 26 - Broadband MSA - III
Lecture 27 - Broadband MSA - IV
Lecture 28 - Broadband MSA - V
Lecture 29 - Compact MSA - I

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Compact MSA - II
Lecture 31 - Compact MSA - III
Lecture 32 - Tunable MSA - I
Lecture 33 - Tunable MSA - II
Lecture 34 - Circularly Polarized MSA - I
Lecture 35 - Circularly Polarized MSA - II
Lecture 36 - Circularly Polarized MSA - III
Lecture 37 - MSA Arrays - I
Lecture 38 - MSA Arrays - II
Lecture 39 - MSA Arrays - III
Lecture 40 - Helical Antennas - I
Lecture 41 - Helical Antennas - II
Lecture 42 - Helical Antennas - III
Lecture 43 - Helical Antennas - IV
Lecture 44 - Helical Antennas - V
Lecture 45 - Horn Antennas - I
Lecture 46 - Horn Antennas - II
Lecture 47 - Horn Antennas - III
Lecture 48 - Horn Antennas - IV
Lecture 49 - Horn Antennas - V
Lecture 50 - Yagi-Uda and Log-Periodic Antennas - I
Lecture 51 - Yagi-Uda and Log-Periodic Antennas - II
Lecture 52 - Yagi-Uda and Log-Periodic Antennas - III
Lecture 53 - IE3D Session TA - I
Lecture 54 - IE3D Session TA - II
Lecture 55 - IE3D Session TA - III
Lecture 56 - Reflector Antennas - I
Lecture 57 - Reflector Antennas - II
Lecture 58 - Reflector Antennas - III
Lecture 59 - Reflector Antennas - IV
Lecture 60 - Lab Session

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC:Fundamentals of Wavelets, Filter Banks and Time Frequency Analysis

Subject Co-ordinator - Prof. V.M. Gadre
Co-ordinating Institute - IIT - Bombay
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Module 1 - Lecture 1 - Introduction
Lecture 2 - Module 1 - Lecture 2 - Origin of Wavelets
Lecture 3 - Module 1 - Lecture 3 - Haar Wavelet
Lecture 4 - Module 2 - Lecture 1 - Dyadic Wavelet
Lecture 5 - Module 2 - Lecture 2 - Dilates and Translates of Haar Wavelets
Lecture 6 - Module 2 - Lecture 3 - L2 Norm of a Function
Lecture 7 - Module 3 - Lecture 1 - Piecewise Constant Representation of a Function
Lecture 8 - Module 3 - Lecture 2 - Ladder of Subspaces
Lecture 9 - Module 3 - Lecture 3 - Scaling Function for Haar Wavelet Demo
Lecture 10 - Demonstration 1
Lecture 11 - Module 4 - Lecture 1 - Vector Representation of Sequences
Lecture 12 - Module 4 - Lecture 2 - Properties of Norm
Lecture 13 - Module 4 - Lecture 3 - Parseval's Theorem
Lecture 14 - Module 5 - Lecture 1 - Equivalence of sequences and functions
Lecture 15 - Module 5 - Lecture 2 - Angle between Functions and their Decomposition
Lecture 16 - Demonstration 2
Lecture 17 - Module 6 - Lecture 1 - Introduction to filter banks
Lecture 18 - Module 6 - Lecture 2 - Haar Analysis Filter Bank in Z-domain
Lecture 19 - Module 6 - Lecture 3 - Haar Synthesis Filter Bank in Z-domain
Lecture 20 - Module 7 - Lecture 1 - Moving from Z-domain to frequency domain
Lecture 21 - Module 7 - Lecture 2 - Frequency Response of Haar Analysis Low pass Filter bank
Lecture 22 - Module 7 - Lecture 3 - Frequency Response of Haar Analysis High pass Filter bank
Lecture 23 - Module 8 - Lecture 1 - Ideal two-band filter bank
Lecture 24 - Module 8 - Lecture 2 - Disqualification of Ideal filter bank
Lecture 25 - Module 8 - Lecture 3 - Realizable two-band filter bank
Lecture 26 - Demonstration 3
Lecture 27 - Module 9 - Lecture 1 - Relating Fourier transform of scaling function to filter bank
Lecture 28 - Module 9 - Lecture 2 - Fourier transform of scaling function
Lecture 29 - Module 9 - Lecture 3 - Construction of scaling and wavelet functions from filter bank

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Demonstration 4
Lecture 31 - Module 10 - Lecture 1 - Introduction to upsampling and down sampling as Multirate operations.
Lecture 32 - Module 10 - Lecture 2 - Up sampling by a general factor M- a Z-domain analysis.
Lecture 33 - Module 10 - Lecture 3 - Down sampling by a general factor M- a Z-domain analysis.
Lecture 34 - Module 11 - Lecture 1 - Z domain analysis of 2 channel filter bank.
Lecture 35 - Module 11 - Lecture 2 - Effect of X (-Z) in time domain and aliasing.
Lecture 36 - Module 11 - Lecture 3 - Consequences of aliasing and simple approach to avoid it.
Lecture 38 - Module 12 - Lecture 2 - Applying perfect reconstruction and alias cancellation on Haar MRA.
Lecture 39 - Module 12 - Lecture 3 - Introduction to Daubechies family of MRA.
Lecture 41 - Module 13 - Lecture 2 - Applying perfect reconstruction condition to obtain filter coefficients.
Lecture 42 - Module 14 - Lecture 1 - Effect of minimum phase requirement on filter coefficients.
Lecture 43 - Module 14 - Lecture 2 - Building compactly supported scaling functions.
Lecture 44 - Module 14 - Lecture 3 - Second member of Daubechies family.
Lecture 45 - Module 15 - Lecture 1 - Fourier transform analysis of Haar scaling and Wavelet functions.
Lecture 46 - Module 15 - Lecture 2 - Revisiting Fourier Transform and Parseval’s theorem.
Lecture 47 - Module 15 - Lecture 3 - Transform Analysis of Haar Wavelet function.
Lecture 48 - Module 16 - Lecture 1 - Nature of Haar scaling and Wavelet functions in frequency domain.
Lecture 49 - Module 16 - Lecture 2 - The Idea of Time-Frequency Resolution.
Lecture 50 - Module 16 - Lecture 3 - Some thoughts on Ideal time- frequency domain behavior.
Lecture 52 - Module 17 - Lecture 2 - Defining Mean, Variance and Â□containment in a given domainÂ□.
Lecture 53 - Module 17 - Lecture 3 - Example.
Lecture 54 - Module 17 - Lecture 4 - Variance from a slightly different perspective.
Lecture 55 - Module 18 - Lecture 1 - Signal transformations.
Lecture 56 - Module 18 - Lecture 2 - Time-Bandwidth product and its properties.
Lecture 57 - Module 18 - Lecture 3 - Simplification of Time-Bandwidth formulae.
Lecture 60 - Module 19 - Lecture 3 - Optimal function in the sense of Time-Bandwidth product.
Lecture 61 - Module 20 - Lecture 1 - Discontent with the Â□Optimal functionÂ□.
Lecture 63 - Module 20 - Lecture 3 - More insights about Time-Bandwidth product.
Lecture 64 - Module 20 - Lecture 4 - Time-frequency plane.
Lecture 65 - Module 20 - Lecture 5 - Tiling the Time-frequency plane.
Lecture 66 - Module 21 - Lecture 1 - STFT.
Lecture 67 - Module 21 - Lecture 2 - STFT.
Lecture 68 - Module 21 - Lecture 3 - STFT.

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN.

www.digimat.in
Lecture 69 - Module 21 - Lecture 4 - Continuous Wavelet Transform (CWT)
Lecture 70 - Demonstration 5
Lecture 71 - Student's Presentation
Lecture 1 - Module 1 - Introduction
Lecture 2 - Module 2 - Poles and zeros
Lecture 3 - Module 3 - OP-AMPS
Lecture 4 - Module 4 - Application of Op-Amps
Lecture 5 - Module 5 - Inverting amplifier and Non Inverting amplifier
Lecture 6 - Module 1 - Non Idealities in Op-AMP (Finite Gain, Finite Bandwidth and Slew Rate)
Lecture 7 - Module 2 - Non Idealities in Op-AMP (Offset Voltage and Bias Current)
Lecture 8 - Module 3 - Bode Plot
Lecture 9 - Module 4 - Frequency Response
Lecture 10 - Module 1 - Frequency Response (High Frequency Response)
Lecture 11 - Module 2 - Frequency Response example
Lecture 12 - Module 3 - Feedback
Lecture 13 - Module 4 - Effects of Feedback
Lecture 14 - Tutorial 1 and 2
Lecture 15 - Module 1 - Effect of feedback and stability
Lecture 16 - Module 2 - Stability
Lecture 17 - Module 3 - Stability and pole location
Lecture 18 - Module 4 - Stability and Pole location continuation
Lecture 19 - Tutorial 3
Lecture 20 - Module 1 - Gain Margin Â An example
Lecture 21 - Module 2 - Frequency Compensation
Lecture 22 - Module 3 - Filters
Lecture 23 - Module 4 - Filter prototypes
Lecture 24 - Tutorial 4
Lecture 25 - Tutorial 5
Lecture 26 - Tutorial 6
Lecture 27 - Module 1 - Chebyshev Prototype, Filter transformation
Lecture 28 - Module 2 - Filter Transformations (Continued....)
Lecture 29 - Module 3 - Active Filters
Lecture 30 - Module 4 - Non Linear Applications of OPAMPS
Lecture 31 - Module 5 - Limiter, Diodes
Lecture 32 - Module 1 - Oscillators
Lecture 33 - Module 2 - Oscillator Amplitude Control, Quadrature Oscillator
Lecture 34 - Module 3 - Multivibrators
Lecture 35 - Module 4 - Multivibrators (Continued...)
Lecture 36 - Module 5 - Monostable Multivibrator
Lecture 37 - Module 1 - Zener Effect, Rectifiers
Lecture 38 - Module 2 - Rectifiers
Lecture 39 - Module 3 - Clamper, Peak Rectifier, Super diodes
Lecture 40 - Module 4 - BJT DC Circuits
Lecture 41 - Module 5 - Current Mirror
NPTEL Video Course - Electrical Engineering - NOC: Microwave Theory and Techniques

Subject Co-ordinator - Prof. Girish Kumar

Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Microwave Theory and Techniques Introduction - I
Lecture 2 - Microwave Theory and Techniques Introduction - II
Lecture 3 - Microwave Theory and Techniques Introduction - III
Lecture 4 - Effects of Microwaves on Human Body - I
Lecture 5 - Effects of Microwaves on Human Body - II
Lecture 6 - Waveguides - I
Lecture 7 - Waveguides - II
Lecture 8 - Waveguides - III
Lecture 9 - Transmission Lines - I
Lecture 10 - Transmission Lines - II
Lecture 11 - Smith Chart and Impedance Matching - I
Lecture 12 - Smith Chart and Impedance Matching - II
Lecture 13 - Smith Chart and Impedance Matching - III
Lecture 14 - ABCD - Parameters
Lecture 15 - S - Parameters
Lecture 16 - Power Dividers - I
Lecture 17 - Power Dividers - II
Lecture 18 - Microwave Couplers - I
Lecture 19 - Microwave Couplers - II
Lecture 20 - Microwave Couplers - III
Lecture 21 - Microwave Filters - I
Lecture 22 - Microwave Filters - II
Lecture 23 - Microwave Filters - III
Lecture 24 - Microwave Filters - IV
Lecture 25 - Microwave Filters - V
Lecture 26 - Microwave Diodes
Lecture 27 - Microwave Attenuators
Lecture 28 - Microwave RF Switches
Lecture 29 - Series and Shunt SPDT Switches and Introduction to Phase Shifters

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Microwave Phase Shifters
Lecture 31 - Microwave Transistors
Lecture 32 - Microwave Amplifiers - I
Lecture 33 - Microwave Amplifiers - II
Lecture 34 - Microwave Amplifiers - III
Lecture 35 - Low Noise Amplifiers - I
Lecture 36 - Low Noise Amplifiers - II
Lecture 37 - Power Amplifiers
Lecture 38 - Microwave Tubes - I
Lecture 39 - Microwave Tubes - II
Lecture 40 - Microwave Tubes - III
Lecture 41 - Microwave Oscillators - I
Lecture 42 - Microwave Oscillators - II
Lecture 43 - Microwave Mixers - I
Lecture 44 - Microwave Mixers - II
Lecture 45 - Microwave Mixers - III
Lecture 46 - Fundamentals of Antennas
Lecture 47 - Dipole, Monopole, loop and Slot Antennas
Lecture 48 - Linear and Planar Arrays
Lecture 49 - Microstrip Antennas
Lecture 50 - Horn and Helical Antennas
Lecture 51 - Yagi - Uda, Log-Periodic and Reflector Antennas
Lecture 52 - RF MEMS and Microwave Imaging
Lecture 53 - Microwave Systems
Lecture 54 - Microwave Measurements and Lab Demonstration
Lecture 55 - CST Software Introduction with Filter Design
Lecture 56 - Power Divider and Combiner Design in CST
Lecture 57 - Hybrid Coupler Design
Lecture 58 - Antenna Design and Amplifier Simulation in CST
Lecture 59 - Mixer Design in NI AWR Software - I
Lecture 60 - Mixer Design in NI AWR Software - II
NPTEL Video Course - Electrical Engineering - NOC: Principles of Digital Communications

Subject Co-ordinator - Prof. S.N. Merchant
Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Course Overview
Lecture 2 - Introduction to Information Theory
Lecture 3 - Entropy and its properties
Lecture 4 - Lossless Source Coding Theorem
Lecture 5 - Prefix Codes and Kraft’s Inequality
Lecture 6 - Huffman Coding
Lecture 7 - Discrete Memory-less Channels
Lecture 8 - Channel Capacity - I
Lecture 9 - Channel Capacity - II
Lecture 10 - Channel Coding Theorem
Lecture 11 - Differential Entropy - I
Lecture 12 - Differential Entropy - II
Lecture 13 - Channel Capacity - III
Lecture 14 - Channel Capacity - IV
Lecture 15 - Summary of Information Theory
Lecture 16 - Signal Space Representations - I
Lecture 17 - Signal Space Representations - II
Lecture 18 - Vector Representation of a Random Process
Lecture 19 - AWGN Vector Channel
Lecture 20 - Basics of Signal Detection
Lecture 21 - ML, MAP Detectors for AWGN Channel
Lecture 22 - Optimal Receiver
Lecture 23 - Probability of error for Optimal Receiver
Lecture 24 - Probability of Error for M-ary Scheme
Lecture 25 - Pulse Code Modulation
Lecture 26 - Uniform Quantizer
Lecture 27 - Step Size and Quantization Noise
Lecture 28 - Non-uniform Quantizer (Lloyd-Max Quantizer)
Lecture 29 - Companded Quantization - I

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Companded Quantization - II
Lecture 31 - Differential Pulse Code Modulation DPCM - I
Lecture 32 - DPCM-II (Linear Prediction)
Lecture 33 - Delta Modulation
Lecture 34 - M-ary PCM/PAM - I
Lecture 35 - M-ary PCM/PAM - II
Lecture 36 - Line Coding - I
Lecture 37 - Line Coding - II
Lecture 38 - Line Coding - III
Lecture 39 - Pulse Shaping for Zero ISI - I
Lecture 40 - Pulse Shaping for Zero ISI - II
Lecture 41 - Pulse Shaping for Zero ISI - III
Lecture 42 - Partial Response Signaling - I
Lecture 43 - Partial Response Signaling - II
Lecture 44 - Principle of Invariance of Probability of Error
Lecture 45 - Binary ASK and PSK
Lecture 46 - Binary Frequency Shift Keying - I
Lecture 47 - Binary Frequency Shift Keying - II
Lecture 48 - Quadrature Phase Shift Keying - I
Lecture 49 - Quadrature Phase Shift Keying - II
Lecture 50 - Quadrature Phase Shift Keying - III
Lecture 51 - Continuous Phase Frequency Shift Keying
Lecture 52 - Minimum Shift Keying - I
Lecture 53 - Minimum Shift Keying - II
Lecture 54 - M-ary Coherent ASK (M-ASK)
Lecture 55 - M-ary PSK
Lecture 56 - M-ary Quadrature Amplitude Modulation (M-QAM)
Lecture 57 - M-ary FSK
Lecture 58 - Comparison of M-ary Schemes
Lecture 59 - Non-coherent BFSK
Lecture 60 - Differential Phase Shift Keying
Lecture 61 - Channel Coding - I
Lecture 62 - Channel Coding - II
Lecture 63 - Channel Coding - III
Lecture 64 - Channel Coding
Lecture 65 - Channel Coding
NPTEL Video Course - Electrical Engineering - NOC: Fundamental of Power Electronics

Subject Co-ordinator - Prof. Vivek Agarwal

Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Familiarization with Power Electronic Systems
Lecture 2 - Overview of Basic Power Electronic Circuits from Laymans Point of View
Lecture 3 - Applications, Definitions, and Nature of Power Electronic Circuits
Lecture 4 - Components of a Power Electronic System
Lecture 5 - Analysis of Switched Networks
Lecture 6 - Review of engineering maths for power electronic circuit analysis
Lecture 7 - Review of semiconductor physics
Lecture 8 - P-N Junction
Lecture 9 - Power Diodes
Lecture 10 - Thyristors
Lecture 11 - Motivation for rectifier capacitor filter
Lecture 12 - Circuit Operation
Lecture 13 - Designing the circuit
Lecture 14 - Simulation setup for NgSpice and gEDA schematic capture
Lecture 15 - Simulating the circuit
Lecture 16 - Practicals
Lecture 17 - Inrush current limiting - Intro
Lecture 18 - Inrush current limiting - Resistor solution
Lecture 19 - Inrush current limiting - Thermistor solution
Lecture 20 - Inrush current limiting - Transformer solution
Lecture 21 - Inrush current limiting - MOSFET solution
Lecture 22 - Inrush current limiting - Relay, contactor
Lecture 23 - Three phase rectifier capacitor filter
Lecture 24 - Simulation - 3 phase rectifier capacitor filter
Lecture 25 - Power factor - Motivation
Lecture 26 - Power factor - Discussion
Lecture 27 - Power factor - Sinusoidal
Lecture 28 - Power factor for rectifier cap filter
Lecture 29 - Passive power improvement circuit

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Review of Signals and Systems</td>
</tr>
<tr>
<td>2</td>
<td>Review of Signals and Systems</td>
</tr>
<tr>
<td>3</td>
<td>Network Equations; Initial and Final Conditions</td>
</tr>
<tr>
<td>4</td>
<td>Problem Session 1</td>
</tr>
<tr>
<td>5</td>
<td>Step, Impulse and Complete Responses</td>
</tr>
<tr>
<td>6</td>
<td>2nd Order Circuits</td>
</tr>
<tr>
<td>7</td>
<td>Transformer Transform Domain Analysis</td>
</tr>
<tr>
<td>8</td>
<td>Problem Session 2</td>
</tr>
<tr>
<td>9</td>
<td>Network Theorems and Network Functions</td>
</tr>
<tr>
<td>10</td>
<td>Network Functions (Continued.)</td>
</tr>
<tr>
<td>11</td>
<td>Amplitude and Phase of Network Functions</td>
</tr>
<tr>
<td>12</td>
<td>Problem Session 3</td>
</tr>
<tr>
<td>13</td>
<td>Poles, Zeros and Network Response</td>
</tr>
<tr>
<td>14</td>
<td>Single Tuned Circuits</td>
</tr>
<tr>
<td>15</td>
<td>Single Tuned Circuits (Continued.)</td>
</tr>
<tr>
<td>16</td>
<td>Double Tuned Circuits</td>
</tr>
<tr>
<td>17</td>
<td>Double Tuned Circuits (Continued.)</td>
</tr>
<tr>
<td>18</td>
<td>Problem Session 4</td>
</tr>
<tr>
<td>19</td>
<td>Double Tuned Circuits (Continued.)</td>
</tr>
<tr>
<td>20</td>
<td>Concept of Delay and Introduction</td>
</tr>
<tr>
<td>21</td>
<td>Two-port Networks (Continued.)</td>
</tr>
<tr>
<td>22</td>
<td>Problem Session 5</td>
</tr>
<tr>
<td>23</td>
<td>Minor - 1</td>
</tr>
<tr>
<td>24</td>
<td>The Hybrid & Transmission Parameters of 2 ports</td>
</tr>
<tr>
<td>25</td>
<td>Problem Session 6</td>
</tr>
<tr>
<td>26</td>
<td>Two-port Network parameters</td>
</tr>
<tr>
<td>27</td>
<td>Two-port Interconnections</td>
</tr>
<tr>
<td>28</td>
<td>Interconnection of Two-port Networks (Continued.)</td>
</tr>
<tr>
<td>29</td>
<td>Problem Session 7</td>
</tr>
</tbody>
</table>
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Control Engineering (Prof. M. Gopal)

Subject Co-ordinator - Prof. M. Gopal
Co-ordinating Institute - IIT - Delhi

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to control problem
Lecture 2 - Basic Feedback Structure
Lecture 3 - Introduction to Control Problem (Continued.)
Lecture 4 - Dynamic Systems and Dynamic Response
Lecture 5 - Dynamic Systems and Dynamic Response (Continued.)
Lecture 6 - Dynamic Systems and Dynamic Response (Continued.)
Lecture 7 - Dynamic Systems and Dynamic Response (Continued.)
Lecture 8 - Dynamic Systems and Dynamic Response (Continued.)
Lecture 9 - Dynamic Systems and Dynamic Response (Continued.)
Lecture 10 - Models of Industrial Control Devices and Systems
Lecture 11 - Models of Industrial Control Devices and Systems (Continued.)
Lecture 12 - Models of Industrial Control Devices and Systems (Continued.)
Lecture 13 - Models of Industrial Control Devices and Systems (Continued.)
Lecture 14 - Models of Industrial Control Devices and Systems (Continued.)
Lecture 15 - Models of Industrial Control Devices and Systems (Continued.)
Lecture 16 - Models of Industrial Control Devices and Systems (Continued.)
Lecture 17 - Models of Industrial Control Devices and Systems (Continued.)
Lecture 18 - Models of Industrial Control Devices and Systems (Continued.)
Lecture 19 - Basic Principles of Feedback Control
Lecture 20 - Basic Principles of Feedback Control (Continued.)
Lecture 21 - Basic Principles of Feedback Control (Continued.)
Lecture 22 - Basic Principles of Feedback Control (Continued.)
Lecture 23 - Concepts of stability and Routh Stability Criterion
Lecture 24 - Concepts of stability and Routh Stability Criterion (Continued.)
Lecture 25 - Concepts of stability and Routh Stability Criterion (Continued.)
Lecture 26 - The Performance of Feedback Systems
Lecture 27 - The Performance of Feedback Systems (Continued.)
Lecture 28 - The Performance of Feedback Systems (Continued.)
Lecture 29 - The Performance of Feedback Systems (Continued.)

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Course - Electrical Engineering - Embedded Systems

Subject Co-ordinator - Prof. Santanu Chaudhary

Co-ordinating Institute - IIT - Delhi

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Embedded Systems
Lecture 2 - Embedded Hardware
Lecture 3 - PIC
Lecture 4 - PIC Peripherals On Chip
Lecture 5 - ARM Processor
Lecture 6 - More ARM Instructions
Lecture 7 - ARM
Lecture 8 - Digital Signal Processors
Lecture 9 - More on DSP Processors
Lecture 10 - System On Chip (SOC)
Lecture 11 - Memory
Lecture 12 - Memory Organization
Lecture 13 - Virtual Memory and Memory Management Unit
Lecture 14 - Bus Structure
Lecture 15 - Bus Structure - 2
Lecture 16 - Bus Structure - 3 Serial Interfaces
Lecture 17 - Serial Interfaces
Lecture 18 - Power Aware Architecture
Lecture 19 - Software for Embedded Systems
Lecture 20 - Fundamentals of Embedded Operating Systems
Lecture 21 - Scheduling Policies
Lecture 22 - Resource Management
Lecture 23 - Embedded - OS
Lecture 24 - Networked Embedded Systems - I
Lecture 25 - Networked Embedded Systems - II
Lecture 26 - Networked Embedded Systems - III
Lecture 27 - Networked Embedded Systems - IV
Lecture 28 - Designing Embedded Systems - I
Lecture 29 - Designing Embedded Systems - II

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Designing Embedded Systems - III
Lecture 31 - Embedded System Design - IV
Lecture 32 - Designing Embedded Systems - V
Lecture 33 - Platform Based Design
Lecture 34 - Compilers for Embedded Systems
Lecture 35 - Developing Embedded Systems
Lecture 36 - Building Dependable Embedded Systems
Lecture 37 - Pervasive and Ubiquitous Computing
Lecture 1 - Electric Energy Systems A Perspective
Lecture 2 - Structure of Power Systems
Lecture 3 - Conventional Sources of Electric Energy
Lecture 4 - Hydroelectric Power Generation
Lecture 5 - Non Conventional Energy Sources
Lecture 6 - Renewable Energy (Continued.)
Lecture 7 - Energy Storage
Lecture 8 - Deregulation
Lecture 9 - Air Pollutants
Lecture 10 - Transmission Line Parameters
Lecture 11 - Capacitance of Transmission Lines
Lecture 12 - Characteristics and Performance of Transmission Lines
Lecture 13 - Voltage Regulation (VR)
Lecture 14 - Power Flow through a Line
Lecture 15 - Methods of Voltage Control
Lecture 16 - Compensation of Transmission Lines
Lecture 17 - Compensation of Transmission Lines (Continued.)
Lecture 18 - Underground Cables
Lecture 19 - Cables (Continued.)
Lecture 20 - Insulators for Overhead Lines
Lecture 21 - HVDC
Lecture 22 - HVDC (Continued.)
Lecture 23 - Distribution Systems
Lecture 24 - Automatic Generation Control
Lecture 25 - Automatic Generation Control (Continued.)
Lecture 26 - Load Flow Studies
Lecture 27 - Load Flow Problem
Lecture 28 - Load Flow Analysis (Continued.), Gauss Siedel Method
Lecture 29 - Newton Raphson (NR), Load Flow Method
Lecture 30 - Fast Decoupled Load Flow
Lecture 31 - Control of Voltage Profile
Lecture 32 - Optimal System Operation (Economic Operation)
Lecture 33 - Optimal Unit Commitment
Lecture 34 - Optimal Generation Scheduling
Lecture 35 - Optimal Load Flow (Continued.) and Hydro Thermal Scheduling
NPTEL Video Course - Electrical Engineering - Power System Dynamics

Subject Co-ordinator - Dr. M.L. Kothari
Co-ordinating Institute - IIT - Delhi

Lecture 1 - Introduction to Power System Stability Problem - Part-1
Lecture 2 - Introduction to Power System Stability Problem - Part-2
Lecture 3 - Introduction to Power System Stability Problem - Part-3
Lecture 4 - Solution of Switching Equation
Lecture 5 - The Equal Area Criterion for Stability - Part-1
Lecture 6 - The Equal Area Criterion for Stability - Part-2
Lecture 7 - Transient Stability Analysis of a Multi Machine System
Lecture 8 - Modeling of Synchronous Machine - Part-1
Lecture 9 - Modeling of Synchronous Machine - Part-2
Lecture 10 - Modeling of Synchronous Machine - Part-3
Lecture 11 - Modeling of Synchronous Machine - Part-4
Lecture 12 - Synchronous Machine Representation for Stability Studies - Part-1
Lecture 13 - Synchronous Machine Representation for Stability Studies - Part-2
Lecture 14 - Excitation Systems - Part-1
Lecture 15 - Excitation Systems - Part-2
Lecture 16 - Modeling of Excitation Systems - Part-1
Lecture 17 - Modeling of Excitation Systems - Part-2
Lecture 23 - Dynamic Modeling of Steam turbines and Governors
Lecture 24 - Dynamic modeling of Hydro Turbines and Governors
Lecture 25 - Load modeling for Stability Studies
Lecture 26 - Numerical Integration Methods for Solving a Set of Ordinary Nonlinear Differential Equation
Lecture 27 - Simulation of Power System Dynamic Response
Lecture 28 - Dynamic Equivalents for Large Scale Systems - Part-1
Lecture 29 - Dynamic Equivalents for Large Scale Systems - Part-2
Lecture 30 - Dynamic Equivalents for Large Scale Systems - Part-3
Lecture 31 - Direct Method of Transient Stability Analysis - Part-1
Lecture 32 - Direct Method of Transient Stability Analysis - Part-2
Lecture 33 - Sub Synchronous Oscillations - Part-1
Lecture 34 - Sub Synchronous Oscillations - Part-2
Lecture 35 - Voltage Stability - Part-1
Lecture 36 - Voltage Stability - Part-2
Lecture 37 - Voltage Stability - Part-3
Lecture 38 - Voltage Stability - Part-4
Lecture 39 - Methods of Improving Stability - Part-1
Lecture 40 - Methods of Improving Stability - Part-2
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Analog Electronic Circuits

Subject Co-ordinator - Prof. S.C. Dutta Roy
Co-ordinating Institute - IIT - Delhi

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Review of DC Models of Diodes & BJT's
Lecture 2 - Review of DC Models of BJT (Continued...) and FET
Lecture 3 - FET Characteristics and Models
Lecture 4 - Problem Session-1 on DC Analysis of BJT Circuits
Lecture 5 - BJT Biasing and Bias Stability
Lecture 6 - BJT Bias Stability (Continued...)
Lecture 7 - FET Biasing, Current Sources
Lecture 8 - Problem Session-2 on FET and BJT Characteristics and Biasing
Lecture 9 - Current Mirrors; BJT Small Signal Models
Lecture 10 - Small Signal Amplifiers
Lecture 11 - Mid Frequency Analysis of the CE and CB Amplifier
Lecture 12 - Problem Session-3 on Mid- Frequency Analysis of CE Amplifiers
Lecture 13 - Midband Analysis of CB and CC Amplifiers
Lecture 14 - Midband Analysis of FET Amplifiers
Lecture 15 - Problem Session-4 on Midband Analysis of Amplifiers
Lecture 16 - High Frequency Response of Small Signal Amplifiers
Lecture 17 - High Frequency Response of Small Signal Amplifiers (Continued...)
Lecture 18 - Low Frequency Response of Small Signal Amplifiers
Lecture 19 - Problem Session-5 on Frequency Response of Small Signal Amplifiers
Lecture 20 - Differential Amplifiers
Lecture 21 - Differential Amplifiers (Continued...)
Lecture 22 - Discussion on Minor-1 Problems and Differential Amplifiers (Continued...)
Lecture 23 - Problem Session-6 on Frequency Response of Small Signal Amplifiers (Continued...) and Differential Amplifiers
Lecture 24 - Use of Current Mirrors in Differential Amplifiers
Lecture 25 - FET Differential Amplifiers and Introduction to Power Amplifiers
Lecture 26 - Class B, Class AB and Class A Power Amplifiers
Lecture 27 - Class A Power Amplifiers; Efficiency Considerations
Lecture 28 - Problem Session-7 on Deferential and Power Amplifiers
Lecture 29 - Introduction to Feedback Amplifiers

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Advantages of Negative Feedback Amplifiers
Lecture 31 - Analysis of Feedback Amplifiers
Lecture 32 - Analysis of the Series - Series and Other Feedback Configurations
Lecture 33 - Problem Session-8 on Feedback Amplifiers
Lecture 34 - Sinusoidal Oscillators
Lecture 35 - More on Oscillators
Lecture 36 - Solutions to Minor-2 Exam and Concluding Discussions on Oscillators
Lecture 37 - Problem Session-9 on Oscillators
Lecture 38 - Tuned (or Narrowband) Amplifiers
Lecture 39 - Widebanding Techniques
Lecture 40 - Widebanding By Using an Inductance
Lecture 41 - Problem Session-10 on Tuned Amplifiers
Lecture 42 - Widebanding by Using Compound Devices
Lecture 43 - Cascode Configuration as Wideband Amplifier
Lecture 44 - Widebanding by Local Feedback
Lecture 45 - Problem Session-11 on Minor-3 Problems & Widebanding by Compound Devices
Lecture 46 - Widebanding by Local Feedback and Feedback Cascades
Lecture 47 - Widebanding by Overall Feedback and Dual Loop Feedback
Lecture 48 - The Differential Pair and the Gilbert Cell as Wideband Amplifiers
Lecture 49 - Correction to Gilbert Cell Analysis and Operational Amplifier Imperfections
Lecture 50 - Op-Amp offsets, Compensation and Slew Rate
Lecture 51 - Op-Amp Compensation, Slew Rate and Some Problems
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Digital Communication

Subject Co-ordinator - Prof. Surendra Prasad

Co-ordinating Institute - IIT - Delhi

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to the Course
Lecture 2 - Digital Representation of Analog Signals, Delta Modulation
Lecture 3 - Digital Representation of Analog Signals, Pulse Code Modulation
Lecture 4 - Digital Representation of Analog Signals
Lecture 5 - Quantization Noise in Delta Modulation (Continued...) and Time Division Multiplexing
Lecture 6 - Introduction to Line Coding
Lecture 7 - Spectral Properties of Line Codes
Lecture 8 - Spectral Properties of Line Codes
Lecture 9 - Spectral Properties of Line Codes
Lecture 10 - Baseband Pulse Shaping
Lecture 11 - Baseband Pulse Shaping; Raised Cosine Family of Pulses
Lecture 12 - Partial Response Signalling
Lecture 13 - Precoding for Duobinary and Modified Duobinary Systems
Lecture 14 - Precoding for Modified Duobinary Systems (Continued...) and General Partial Response Signalling
Lecture 15 - Binary Baseband Digital Modulation Techniques
Lecture 16 - Many Baseband Digital Modulation Techniques
Lecture 17 - Passband Digital Modulations - I
Lecture 18 - Passband Digital Modulations - II
Lecture 19 - Passband Digital Modulations - III
Lecture 20 - Passband Digital Modulations - IV
Lecture 21 - Passband Modulations for Band Limited Channels
Lecture 22 - Baseband and Passband Digital Demodulations
Lecture 23 - Digital Modulation Part - II Matched Filters
Lecture 24 - Matched Filters and Coherent Demodulation - I
Lecture 25 - Coherent Demodulation for Binary Wave Form
Lecture 26 - Demodulators for Binary Waveforms (Continued...)
Lecture 27 - Performance Analysis of Binary Digital Modulations
Lecture 28 - Error Rates for Binary Signalling
Lecture 29 - Performance of Non Coherent FSK and Differential Phase Shift Keying

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Demodulation of DPSK and M\'ary Signals
Lecture 31 - Performance of M\'ary Digital Modulations
Lecture 32 - Performance of M\'ary Digital Modulations (Continued...)
Lecture 33 - Introduction to Information Theory, Part-1
Lecture 34 - Source Coding
Lecture 35 - Error Free Communication Over a Noisy Channel
Lecture 36 - The Concept of Channel Capacity
Lecture 37 - Error Correcting Codes
Lecture 38 - Error Correcting Codes (Continued...)
Lecture 30 - BJT Biasing and Introduction to Power Amplifiers
Lecture 31 - BJT Power Amplifiers
Lecture 32 - Power Amplifier
Lecture 33 - Power Amplifiers (Continued...) and an Introduction to Small Signal Modelling of BJT
Lecture 34 - Small Signal Model and Small Signal Amplifiers
Lecture 35 - Small Signal Amplifiers (Continued...)
Lecture 36 - Small Signal Amplifier (Continued...)
Lecture 37 - Small Signal Amplifiers (Continued...)
Lecture 38 - Negative Feedback
Lecture 39 - Digital Circuits
Lecture 40 - Digital Circuits (Continued...)
Lecture 1 - Introduction to Analog Circuits Introduction to the Diode
Lecture 2 - Diodes, Introduction to The Transistor
Lecture 3 - MOS Device, Characteristics
Lecture 4 - DC operating point
Lecture 5 - DC operating point, amplifier design
Lecture 6 - Common source amplifier, small signal analysis
Lecture 7 - Common gate, common drain
Lecture 8 - Common gate circuit
Lecture 9 - Source degenerated amplifier
Lecture 10 - Swing limits
Lecture 11 - Swing limits (Continued...), multi transistor amplifiers
Lecture 12 - Multi-transistor amplifiers
Lecture 13 - Introduction to current sources
Lecture 14 - Current sources/mirrors (Continued...)
Lecture 15 - Current sources, biasing
Lecture 16 - Differential circuits
Lecture 17 - Differential amplifiers-I
Lecture 18 - Differential amplifiers-II
Lecture 19 - Differential amplifiers-III
Lecture 20 - Self biased active load diff. amp
Lecture 21 - Diff. Cascode amplifier, two stage amplifiers
Lecture 22 - Two stage diff. amps, op-amps
Lecture 23 - Op-amps, OTAs
Lecture 24 - Circuits with op-amps
Lecture 25 - Capacitance in MOS devices
Lecture 26 - Common source, drain, gate-revisited
Lecture 27 - Common gate, common drain with capacitances
Lecture 28 - Cascade, cascade-revisit with capacitance
Lecture 29 - Cascade amplifier (with capacitance)
Lecture 30 - Diversion
Lecture 31 - Diversion Continued
Lecture 32 - Compensation
Lecture 33 - Op-amp Design with Compensation
Lecture 34 - Unity Gain Bandwidth
Lecture 35 - Power Amplification
Lecture 36 - Power Amplifiers-2
Lecture 37 - Power Amplifiers- Class A,B,AB,C ClassD
Lecture 38 - Class D Amplifiers, Push-pull Amplifiers
Lecture 39 - Introduction to Voltage Regulators
Lecture 40 - Voltage Regulators- line, load; Conclusion Regulation
NPTEL Video Course - Electrical Engineering - NOC:Nonlinear and Adaptive Control

Subject Co-ordinator - Prof. Shubhendu Bhasin

Co-ordinating Institute - IIT - Delhi

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction
Lecture 2 - Preliminaries
Lecture 3 - Model Reference Adaptive Control - Part 1
Lecture 4 - Model Reference Adaptive Control - Part 2
Lecture 5 - Model Reference Adaptive Control - Part 3
Lecture 6 - Adaptive Command Tracking
Lecture 7 - Robust Model Reference Adaptive Control - Part 1
Lecture 8 - Robust Model Reference Adaptive Control - Part 2
Lecture 9 - Robust Model Reference Adaptive Control - Part 3
Lecture 10 - Robust Model Reference Adaptive Control - Part 4
Lecture 30 - Introduction to Trellis Coded Modulation (TCM)
Lecture 31 - Ungerboek's Design Rules and Performance Evaluation of TCM Schemes
Lecture 32 - TCM for Fading Channel and Space Time Trellis Codes (STTC)
Lecture 33 - Introduction to Space Time Block Codes (STBC)
Lecture 34 - Space Time Codes
Lecture 35 - Space Time Codes (Continued...)
Lecture 36 - Introduction to Cryptography
Lecture 37 - Some Well-Known Algorithms
Lecture 38 - Introduction to Physical Layer Security
Lecture 39 - Secrecy Outage Capacity, Secrecy Outage Probability, Cooperative Jamming

Subject Co-ordinator - Prof. Abhishek Dixit

Co-ordinating Institute - IIT - Delhi

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction
Lecture 2 - Signal Spaces
Lecture 3 - Inner Product and Orthogonal Expansion
Lecture 4 - Signal Spaces
Lecture 5 - Signal Spaces
Lecture 6 - Signal Spaces
Lecture 7 - Random Variables and Random Processes
Lecture 8 - Random Variables and Random Processes
Lecture 9 - Random Variables and Random Processes
Lecture 10 - Random Variables and Random Processes
Lecture 11 - Random Variables and Random Processes
Lecture 12 - Random Variables and Random Processes
Lecture 13 - Random Variables and Random Processes
Lecture 14 - Random Variables and Random Processes
Lecture 15 - Random Variables and Random Processes
Lecture 16 - Random Variables and Random Processes
Lecture 17 - Random Variables and Random Processes
Lecture 18 - Waveform Coding
Lecture 19 - Modulation
Lecture 20 - Modulation
Lecture 21 - Modulation
Lecture 22 - Modulation
Lecture 23 - Modulation
Lecture 24 - Modulation
Lecture 25 - Modulation
Lecture 26 - Modulation
Lecture 27 - Modulation
Lecture 28 - Modulation
Lecture 29 - Modulation

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Detection
Lecture 31 - Detection
Lecture 32 - Detection
Lecture 33 - Detection
Lecture 34 - Detection
Lecture 35 - Detection
Lecture 36 - Detection
Lecture 37 - Detection
Lecture 38 - Detection
NPTEL Video Course - Electrical Engineering - NOC: Electric Vehicles - Part 1

Subject Co-ordinator - Prof. Amit Jain
Co-ordinating Institute - IIT - Delhi

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Intro EV Historical Background
Lecture 2 - Intro EV Benefits of Using Evs
Lecture 3 - Intro EV Overview of types of Evs and its Challenges
Lecture 4 - Intro EV Motor Drive Technologies
Lecture 5 - Intro EV Energy Source Technologies
Lecture 6 - Intro EV Battery Charging Technologies
Lecture 7 - Intro EV Vehicle to Grid
Lecture 8 - Intro EV Subsystems and Configurations
Lecture 9 - Intro HEV Subsystems and Configurations
Lecture 10 - Intro HEV Subsystems and Modes of Operation
Lecture 11 - Vehicle_Dynamics_intro_and_tractive_effort
Lecture 12 - Vehicle_Dynamics_and_dynamic_equation
Lecture 13 - Vehicle Dynamics simulation dynamic equation constant Fte
Lecture 14 - Vehicle Dynamics dynamic equation variable Fte
Lecture 15 - Vehicle Dynamics simulation dynamic equation variable Fte
Lecture 16 - Vehicle Dynamics Modelling and simulation in Simulink
Lecture 17 - Summary Electric Vehicles Part 1 Course
NPTEL Video Course - Electrical Engineering - Advanced Control Systems

Subject Co-ordinator - Prof. S. Majhi

Co-ordinating Institute - IIT - Guwahati

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction
Lecture 2 - Control structures and performance measures
Lecture 3 - Time and frequency domain performance measures
Lecture 4 - Design of controller
Lecture 5 - Design of controller for SISO system
Lecture 6 - Controller design for TITO processes
Lecture 7 - Limitations of PID controllers
Lecture 8 - PI-PD controller for SISO system
Lecture 9 - PID-P controller for Two Input Two Output system
Lecture 10 - Effects of measurement noise and load
Lecture 11 - Identification of dynamic models of plants
Lecture 12 - Relay control system for identification
Lecture 13 - Off-line identification of process dynamics
Lecture 14 - On-line identification of plant dynamics
Lecture 15 - State space based identification
Lecture 16 - State space analysis of systems
Lecture 17 - State space based identification of systems - 1
Lecture 18 - State space based identification of systems - 2
Lecture 19 - Identification of simple systems
Lecture 20 - Identification of FOPDT model
Lecture 21 - Identification of second order plus dead time model
Lecture 22 - Identification of SOPDT model
Lecture 23 - Steady state gain from asymmetrical relay test
Lecture 24 - Identification of SOPDT model with pole multiplicity
Lecture 25 - Existence of limit cycle for unstable system
Lecture 26 - Identification procedures
Lecture 27 - Identification of underdamped systems
Lecture 28 - Off-line identification of TITO systems
Lecture 29 - On-line identification of TITO systems

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Review of time domain based identification
Lecture 31 - DF based analytical expressions for on-line identification
Lecture 32 - Model parameter accuracy and sensitivity
Lecture 33 - Improved identification using Fourier series and wavelet transform
Lecture 34 - Reviews of DF based identification
Lecture 35 - Advanced Smith predictor controller
Lecture 36 - Design of controllers for the advanced Smith predictor
Lecture 37 - Model-free controller design
Lecture 38 - Model Based PID controller Design - I
Lecture 39 - Model Based PI-PD controller Design - II
Lecture 40 - Tuning of reconfigurable PID controllers
NPTEL Video Course - Electrical Engineering - NOC:Optimization Techniques for Digital VLSI Design

Subject Co-ordinator - Dr. Santosh Biswas, Prof. Chandan Karfa

Co-ordinating Institute - IIT - Guwahati

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Digital VLSI Design Flow
Lecture 2 - High-level Synthesis (HLS) flow with an example
Lecture 3 - Automation of High-level Synthesis Steps
Lecture 4 - Impact of Coding Style on HLS Results
Lecture 5 - Impact of Compiler Optimizations on HLS Results
Lecture 6 - RTL Optimizations for Timing
Lecture 7 - Retiming
Lecture 8 - RTL Optimizations for Area
Lecture 9 - RTL Optimizations for Power
Lecture 10 - High Level Synthesis
Lecture 11 - Overview of FPGA Technology Mapping
Lecture 12 - Introduction to Physical Synthesis
Lecture 13 - Introduction to Digital VLSI Testing - I
Lecture 14 - Introduction to Digital VLSI Testing - II
Lecture 15 - Optimization Techniques for ATPG - Part I
Lecture 16 - Optimization Techniques for ATPG - Part II
Lecture 17 - Optimization Techniques for Design for Testability
Lecture 18 - High-level fault modeling and RTL level Testing
Lecture 19 - LTL/CTL based Verification
Lecture 20 - Verification of Large Scale Systems
Lecture 21 - BDD based verification
Lecture 22 - Verification
Lecture 23 - Verification
Lecture 24 - Verification

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimati.in
Lecture 1 - Probability Basics
Lecture 2 - Random Variable - I
Lecture 3 - Random Variable - II
Lecture 4 - Random Vectors and Random Processes
Lecture 5 - Infinite Sequence of Events - I
Lecture 6 - Infinite Sequence of Events - II
Lecture 7 - Convergence of Sequence of Random Variables
Lecture 8 - Weak Convergence - I
Lecture 9 - Weak Convergence - II
Lecture 10 - Laws of Large Numbers
Lecture 11 - Central Limit Theorem
Lecture 12 - Large Deviation Theory
Lecture 13 - Crammer's Theorem for Large Deviation
Lecture 14 - Introduction to Markov Processes
Lecture 15 - Discrete Time Markov Chain - 1
Lecture 16 - Discrete Time Markov Chain - 2
Lecture 17 - Discrete Time Markov Chain - 3
Lecture 18 - Discrete Time Markov Chain - 4
Lecture 19 - Discrete Time Markov Chain - 5
Lecture 20 - Continuous Time Markov Chain - 1
Lecture 21 - Continuous Time Markov Chain - 2
Lecture 22 - Continuous Time Markov Chain - 3
Lecture 23 - Martingale Process - 1
Lecture 24 - Martingale Process - 2
Lecture 30
Lecture 31
Lecture 32
Lecture 33
Lecture 34
Lecture 35
Lecture 36
Lecture 37
Lecture 38
Lecture 39
Lecture 40
NPTEL Video Course - Electrical Engineering - High Voltage DC Transmission

Subject Co-ordinator - Dr. S.N. Singh
Co-ordinating Institute - IIT - Kanpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - High Voltage DC Transmission
Lecture 2 - High Voltage DC Transmission
Lecture 3 - High Voltage DC Transmission
Lecture 4 - High Voltage DC Transmission
Lecture 5 - High Voltage DC Transmission
Lecture 6 - High Voltage DC Transmission
Lecture 7 - High Voltage DC Transmission
Lecture 8 - High Voltage DC Transmission
Lecture 9 - High Voltage DC Transmission
Lecture 10 - High Voltage DC Transmission
Lecture 11 - High Voltage DC Transmission
Lecture 12 - High Voltage DC Transmission
Lecture 13 - High Voltage DC Transmission
Lecture 14 - High Voltage DC Transmission
Lecture 15 - High Voltage DC Transmission
Lecture 16 - High Voltage DC Transmission
Lecture 17 - High Voltage DC Transmission
Lecture 18 - High Voltage DC Transmission
Lecture 19 - High Voltage DC Transmission
Lecture 20 - High Voltage DC Transmission
Lecture 21 - High Voltage DC Transmission
Lecture 22 - High Voltage DC Transmission
Lecture 23 - High Voltage DC Transmission
Lecture 24 - High Voltage DC Transmission
Lecture 25 - High Voltage DC Transmission
Lecture 26 - High Voltage DC Transmission
Lecture 27 - High Voltage DC Transmission
Lecture 28 - High Voltage DC Transmission
Lecture 29 - High Voltage DC Transmission

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - High Voltage DC Transmission
Lecture 31 - High Voltage DC Transmission
Lecture 32 - High Voltage DC Transmission
Lecture 33 - High Voltage DC Transmission
Lecture 34 - High Voltage DC Transmission
Lecture 35 - High Voltage DC Transmission
Lecture 36 - High Voltage DC Transmission
Lecture 37 - High Voltage DC Transmission
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course – Electrical Engineering – Intelligent Systems and Control

Subject Co-ordinator - Prof. Laxmidhar Behera
Co-ordinating Institute - IIT – Kanpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Intelligent Systems and Control
Lecture 2 - Linear Neural networks
Lecture 3 - Multi layered Neural Networks
Lecture 4 - Back Propagation Algorithm revisited
Lecture 5 - Non Linear System Analysis - Part I
Lecture 6 - Non Linear System Analysis - Part II
Lecture 7 - Radial Basis Function Networks
Lecture 8 - Adaptive Learning rate
Lecture 9 - Weight update rules
Lecture 10 - Recurrent networks Back propagation through time
Lecture 11 - Recurrent networks Real time recurrent learning
Lecture 12 - Self organizing Map - Multidimensional networks
Lecture 13 - Fuzzy sets - A Primer
Lecture 14 - Fuzzy Relations
Lecture 15 - Fuzzy Rule base and Approximate Reasoning
Lecture 16 - Introduction to Fuzzy Logic Control
Lecture 17 - Neural Control A review
Lecture 18 - Network inversion and Control
Lecture 19 - Neural Model of a Robot manipulator
Lecture 20 - Indirect Adaptive Control of a Robot manipulator
Lecture 21 - Adaptive neural control for Affine Systems SISO
Lecture 22 - Adaptive neural control for Affine systems MIMO
Lecture 23 - Visual Motor Coordination with KSOM
Lecture 24 - Visual Motor coordination - quantum clustering
Lecture 25 - Direct Adaptive control of Manipulators - Intro
Lecture 26 - NN based back stepping control
Lecture 27 - Fuzzy Control - a Review
Lecture 28 - Mamdani type flc and parameter optimization
Lecture 29 - Fuzzy Control of a pH reactor

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Fuzzy Lyapunov controller - Computing with words
Lecture 31 - Controller Design for a T-S Fuzzy model
Lecture 32 - Linear controllers using T-S fuzzy model
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Power Systems Operation and Control

Subject Co-ordinator - Dr. S.N. Singh
Co-ordinating Institute - IIT - Kanpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Module 1 - Lecture 1
Module 1 - Lecture 2
Module 1 - Lecture 3
Module 2 - Lecture 1
Module 2 - Lecture 2
Module 2 - Lecture 3
Module 2 - Lecture 4
Module 2 - Lecture 5
Module 2 - Lecture 6
Module 2 - Lecture 7
Module 2 - Lecture 8
Module 2 - Lecture 9
Module 2 - Lecture 10
Module 2 - Lecture 11
Module 2 - Lecture 12
Module 2 - Lecture 13
Module 2 - Lecture 14
Module 3 - Lecture 1
Module 3 - Lecture 2
Module 3 - Lecture 3
Module 3 - Lecture 4
Module 3 - Lecture 5
Module 3 - Lecture 6
Module 3 - Lecture 7
Module 3 - Lecture 8
Module 3 - Lecture 9
Module 3 - Lecture 10
Module 4 - Lecture 1
Module 4 - Lecture 2

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Module 4 - Lecture 3
Module 4 - Lecture 4
Module 5 - Lecture 1
Module 5 - Lecture 2
Module 6 - Lecture 1
Module 6 - Lecture 2
NPTEL Video Course - Electrical Engineering - NOC: Electromagnetic theory

Subject Co-ordinator - Dr. Pradeep Kumar K

Co-ordinating Institute - IIT - Kanpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to EMT
Lecture 2 - Coulomb's law
Lecture 3 - Vector analysis-I and Introduction to coordinate system
Lecture 4 - Rectangular coordinate system
Lecture 5 - Vector analysis-II
Lecture 6 - Introduction to Electric field
Lecture 7 - Electric field-I
Lecture 8 - Cylindrical coordinate system
Lecture 9 - Transformation and Electric field-II
Lecture 10 - Electric Potential-I
Lecture 11 - Spherical co-ordinate system and Electric potential-II
Lecture 12 - Vector Analysis-III and Electric potential-III
Lecture 13 - Gauss's law and its application-I
Lecture 14 - Gauss's law and its application-II
Lecture 15 - Divergence and Poisson's and Laplace's equation
Lecture 16 - Gauss's law and its application -III
Lecture 17 - Vector analysis Â– III (curl and its significance)
Lecture 18 - Conductor and dielectric-I
Lecture 19 - Polarization - I
Lecture 20 - Polarization - II
Lecture 21 - Polarization - II (Continued...)
Lecture 22 - Boundary condition
Lecture 23 - Continuity equation and Conductors - III
Lecture 24 - Conductors Â– IV
Lecture 25 - Conductors Â– IV (Continued...) and Capacitor - I
Lecture 26 - Capacitor - II
Lecture 27 - Capacitor - II (Continued...) and Equipotential Surfaces
Lecture 28 - Solution of LaplaceÂ’s equation-I
Lecture 29 - Solution of LaplaceÂ’s equation-I I and method of images-I

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Method of images-II
Lecture 31 - Solution of Laplace’s equation-III
Lecture 32 - Solution of Laplace’s equation-IV
Lecture 33 - Introduction of magnetic field
Lecture 34 - Biot savart law and its application
Lecture 35 - Biot savart law and its application-II
Lecture 36 - Magnetic vector potential
Lecture 37 - Magnetic force, torque and dipole
Lecture 38 - Magnetic force, torque and dipole (Continued...)
Lecture 39 - Magnetic materials-I
Lecture 40 - Magnetic materials-I (Continued...) and Magnetic moment
Lecture 41 - Magnetic materials-I (Continued...) and Boundary condition for Magnetic fields
Lecture 42 - Inductor and calculation of inductance for different shapes
Lecture 43 - Inductor and calculation of inductance for different shapes (Continued...)
Lecture 44 - Faraday’s law and its application-I
Lecture 45 - Faraday’s law and its application-II
Lecture 46 - Displacement current
Lecture 47 - Maxwell’s equation
Lecture 48 - Wave propagation
Lecture 49 - Solution of Helmholtz equation
Lecture 50 - Uniform plane waves
Lecture 51 - Polarization and Poynting Vector
Lecture 52 - Wave reflections (Normal incidence)
Lecture 53 - Waves in imperfect dielectrics and Good conductors
Lecture 54 - Skin depth/effect
Lecture 55 - Oblique incidence of waves
Lecture 56 - Oblique incidence of waves (Continued...)
Lecture 57 - Transmission line
Lecture 58 - Transmission line model
Lecture 59 - Steady state sinusoidal response of T-line-I
Lecture 60 - Steady state sinusoidal response of T-line-II
Lecture 61 - Steady state sinusoidal response of T-line-II and Smith chart
Lecture 62 - Application of smith chart-I
Lecture 63 - Application of smith chart-II
Lecture 64 - Impedance matching
Lecture 65 - Transients on Transmission line-I
Lecture 66 - Transients on Transmission line-II
Lecture 67 - Pulse on Transmission line
Lecture 68 - Capacitive termination in Transmission line

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 69 - Waveguide
Lecture 70 - Waveguide Analysis
Lecture 71 - TM modes in Waveguide
Lecture 72 - Rectangular waveguide
Lecture 73 - Rectangular waveguide
Lecture 74 - Waveguide
Lecture 75 - Waveguide losses
Lecture 76 - Dielectric Waveguide
Lecture 77 - Dielectric Waveguide (Continued...)
Lecture 78 - Radiation and Antenna
Lecture 79 - Hertzian Dipole Antenna
Lecture 80 - Hertzian Dipole Antenna (Continued...)
Lecture 81 - Quasi-statistics-I
Lecture 82 - Quasi-statistics-II
Lecture 83 - Long wire Antenna
Lecture 84 - Group velocity and Phase velocity
Lecture 85 - Numerical solution of Laplace's equation

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 1 - Basics - Definition of Energy and Power of Signals
Lecture 2 - Frequency Domain Representation and Introduction to Discrete Fourier Series
Lecture 3 - Discrete Fourier Series Example and Parseval's Theorem for Periodic Signals
Lecture 4 - Fourier Transform (FT), Inverse Fourier Transform (IFT) of Continuous Signals, Example of FT of E
Lecture 5 - Modulation Property of Fourier Transform, Dirac Delta or Unit Impulse Function - Definition and FT
Lecture 6 - Duality Property of Fourier Transform and Introduction to Linear Time Invariant (LTI) Systems
Lecture 7 - Transmission of Signal through Linear Time Invariant (LTI) Systems and Cross-Correlation of Signals
Lecture 8 - Auto-Correlation of Signal and Energy Spectral Density (ESD)
Lecture 9 - Example for Auto-Correlation of Signal and Energy Spectral Density (ESD)
Lecture 10 - Introduction to Amplitude Modulation (AM), Modulation Index, Envelope Distortion and Over Modulation
Lecture 11 - Spectrum of Amplitude Modulated (AM) Signals and Introduction to Envelope Detection
Lecture 12 - Envelope Detection for Amplitude Modulated (AM) Signals and Time Constant for Capacitor in Envelope Detector
Lecture 13 - Power of Amplitude Modulated (AM) Signals and Power Efficiency of AM Signals
Lecture 14 - Double Sideband (DSB) Suppressed Carrier (SC) Modulation, Spectrum of DSB-SC Signals and Coherent Demodulation
Lecture 15 - Double Sideband (DSB) Suppressed Carrier (SC) Demodulation, Non-coherent demodulation, Impact of Carrier Phase Offset
Lecture 16 - Carrier Phase Offset Example for Double Sideband (DSB) Suppressed Carrier (SC) Demodulation - Wireless Communication
Lecture 17 - Phase Synchronization using Costas Receiver for Double Sideband (DSB) Suppressed Carrier (SC) Demodulation
Lecture 18 - Introduction to Quadrature Carrier Multiplexing (QCM) and Demodulation of QCM Signals
Lecture 19 - Introduction to Single Sideband (SSB) Modulation
Lecture 20 - Generation of Single Sideband (SSB) Modulation Signals through Frequency Discrimination
Lecture 21 - Frequency Domain Description of Hilbert Transform Â• Fourier Spectrum of the Hilbert Transformer
Lecture 22 - Time Domain Description of Hilbert Transform Â• Impulse Response of the Hilbert Transformer
Lecture 23 - Phase Shifting Method for Generation of Single Sideband (SSB) Modulated Signals based on Hilbert Transform
Lecture 24 - Complex Pre-Envelope and Complex Envelope of Passband Signals
Lecture 25 - Complex Pre-Envelope and Complex Envelope of QCM (Quadrature Carrier Modulated) Signals
Lecture 26 - Introduction to Vestigial Sideband (VSB) Modulation and Non-Ideal Filtering, Spectral Efficiency
Lecture 27 - Properties of Vestigial Sideband Filter for Reconstruction of Message Signal without Distortion
Lecture 28 - Introduction to Angle Modulation, Description of Phase Modulation (PM) and Frequency Modulation (FM)
Lecture 29 - Frequency Modulation (FM) with Sinusoidal Modulation Signal and Pictorial Examples, Insights of FM

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

Lecture 30 - Indirect Method for Generation of FM Signals - Generation of Narrowband FM Signal
Lecture 31 - Indirect Method for Generation of FM Signals - Generation of Wideband FM Signal through Frequency Multiplication
Lecture 32 - Spectrum of Frequency Modulated (FM) Signals
Lecture 33 - Bandwidth of Frequency Modulated (FM) Signals - Carson's Rule
Lecture 34 - Demodulation of Frequency Modulated (FM) Signals, Condition of Envelope Detection
Lecture 35 - Analog to Digital Conversion of Signals and Introduction to Sampling
Lecture 36 - Spectrum of Sampled Signal, Aliasing and Nyquist Sampling Theorem
Lecture 37 - Ideal Impulse Train Sampling, Reconstruction of Original Signal from Samples, Sinc Interpolation
Lecture 38 - Introduction to Pulse Amplitude Modulation (PAM), Sample and Hold, Flat Top Sampling
Lecture 39 - Pulse Amplitude Modulation (PAM), Spectrum of PAM Signal, Reconstruction of Original Signal from Samples
Lecture 40 - Introduction to Quantization, Uniform Quantizer, Mid-Tread Quantizer
Lecture 41 - Quantization, Mid-Rise Quantizer, PDF and Power of Quantization Noise, Quantization Noise Power
Lecture 42 - Introduction to Lloyd-Max Quantization Algorithm, Optimal Quantizer Design
Lecture 43 - Lloyd-Max Quantization Algorithm, Iterative Computation of Optimal Quantization Levels and Intervals
Lecture 44 - Comping for Non-Uniform Quantization, Mu-law Compressor, A-law Compressor
Lecture 45 - Introduction to Delta Modulation, One-bit Quantizer
Lecture 46 - Signal Reconstruction in Delta Modulation, Schematic Diagrams, Slope Overload Distortion and Granular Noise
Lecture 47 - Differential Pulse Coded Modulation (DPCM), DPCM Signal Reconstruction and Schematic Diagram
Lecture 48 - Frequency Mixing and Translation in Communication Systems, Heterodyne and Super Heterodyne Receivers
Lecture 49 - Frequency Translation and Super Heterodyne Receivers, Problem of Image Frequency
Lecture 50 - Frequency Division Multiplexing (FDM), Carrier Spacing in FDM
Lecture 51 - Time Division Multiplexing (TDM), Operation of TDM, Sample Spacing in TDM
Lecture 52 - Bandwidth Requirements for Time Division Multiplexing (TDM), The T1 TDM System

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Joint Entropy, Definition of Joint Entropy of Two Sources and Simple Examples for Joint Entropy Computation
Lecture 31 - Properties of Joint Entropy and Relation between Joint Entropy and Marginal Entropies
Lecture 32 - Conditional Entropy, Example of Conditional Entropy and Properties of Conditional Entropy
Lecture 33 - Mutual Information, Diagrammatic Representation and Properties of Mutual Information
Lecture 34 - Simple Example of Mutual Information and Practical Example of Mutual Information - Binary Symmetric Channel
Lecture 35 - Channel Capacity, Implications of Channel Capacity, Claude E. Shannon - Father of Information Theory
Lecture 36 - Differential Entropy and Example for Uniform Probability Density Function
Lecture 37 - Differential Entropy of Gaussian Source and Insights
Lecture 38 - Joint Conditional/ Differential Entropies and Mutual Information
Lecture 39 - Capacity of Gaussian channel - Part I
Lecture 40 - Capacity of Gaussian Channel - Part II, Practical Implications and Maximum rate in bits/sec
Lecture 41 - Introduction to Source Coding and Data Compression, Variable Length codes and Unique Decodability
Lecture 42 - Uniquely Decodable Codes, Prefix-free code, Instantaneous Code and Average Code length
Lecture 43 - Binary Tree Representation of Code, Example and Kraft Inequality
Lecture 44 - Lower Bound on Average Code Length and Kullback-Leibler Divergence
Lecture 45 - Optimal Code length, Constrained Optimization and Morse Code Example
Lecture 46 - Approaching Lower Bound on Average code length and Block Coding
Lecture 47 - Huffman Code, Algorithm, Example and Average Code Length
Lecture 48 - Introduction to channel coding, Rate of Code, Repetition Code and Hamming Distance
Lecture 49 - Introduction to Convolutional Codes, Binary Field Arithmetic and Linear Codes
Lecture 50 - Example of Convolutional Code Output and Convolution Operation for Code generation
Lecture 51 - Matrix Representation of Convolutional Codes, Generator Matrix, Transform Domain Representation
Lecture 52 - State Diagram Representation of Convolutional Code, State transitions and Example of Code Generation
Lecture 53 - Trellis Representation of Convolutional Code and Valid Code Words
Lecture 54 - Decoding of the Convolutional Code, Minimum Hamming distance and Maximum Likelihood Codeword Estimate
Lecture 55 - Principle of Decoding of Convolutional code
Lecture 56 - Viterbi Decoder for Maximum Likelihood Decoding of Convolutional Code Using Trellis Representation
Lecture 30 - Faraday's law
Lecture 31 - Completing Maxwell's equations and Boundary conditions
Lecture 32 - Boundary conditions for Electromagnetic fields
Lecture 33 - Electrostatics-I
Lecture 34 - Electrostatics-II
Lecture 35 - Electrostatics-III
Lecture 36 - Electrostatics-IV
Lecture 37 - Magnetostatic fields-I
Lecture 38 - Magnetostatic fields-II
Lecture 39 - Inductance calculations
Lecture 40 - From Maxwell's equations to uniform plane waves
Lecture 41 - Plane wave propagation in lossless dielectric media
Lecture 42 - Polarization of plane waves
Lecture 43 - Can an Ideal capacitor exist?
Lecture 44 - Skin effect in conductors
Lecture 45 - Skin effect in round wires
Lecture 46 - Finite difference method
Lecture 47 - Reflection of uniform plane waves
Lecture 48 - Application
Lecture 49 - Oblique incidence of plane waves
Lecture 50 - Total internal reflection
Lecture 51 - Application
Lecture 52 - Application
Lecture 53 - Introduction to waveguides
Lecture 54 - Rectangular waveguides
Lecture 55 - Attenuation and Dispersion in rectangular waveguides
Lecture 56 - Planar optical waveguides
Lecture 57 - Application
Lecture 58 - Application
Lecture 59 - Mach-Zehnder Modulator
Lecture 60 - Wave Propagation in Anisotropic Medium
Lecture 61 - Wave Propagation in Ferrites
Lecture 62 - Magnetic Vector Potential - Part 1
Lecture 63 - Magnetic Vector Potential - Part 2
Lecture 64 - Fields of a Dipole Antenna
Lecture 65 - Antenna Parameters and Long wire Antenna
Lecture 66 - Friis Transmission Formula
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC: Principles of Signals and Systems

Subject Co-ordinator - Prof. Aditya K. Jagannatham

Co-ordinating Institute - IIT - Kanpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Principles of Signals and Systems - Introduction to Signals and Systems, Signal Classification - Continuous and Discrete Time Signals
Lecture 2 - Analog and Digital Signals
Lecture 3 - Energy and Power Signals
Lecture 4 - Real Exponential Signals
Lecture 5 - Memory/Memory-less and Causal/Non-Causal Systems
Lecture 6 - Properties of Linear Systems
Lecture 7 - Example Problems - 1
Lecture 8 - Example Problems - 2
Lecture 9 - Example Problems - 3
Lecture 10 - Properties and Analysis of LTI Systems - I
Lecture 11 - Properties and Analysis of LTI Systems - II
Lecture 12 - Properties and Analysis of LTI Systems - III
Lecture 13 - Properties of Discrete Time LTI Systems
Lecture 14 - Example Problems LTI Systems - I
Lecture 15 - Example Problems LTI Systems - II
Lecture 16 - Example Problems DT-LTI Systems
Lecture 17 - Laplace Transform
Lecture 18 - Laplace Transform Properties - I
Lecture 19 - Laplace Transform Properties - II
Lecture 20 - Laplace Transform of LTI Systems
Lecture 21 - Laplace Transform Example Problems - I
Lecture 22 - Laplace Transform Example Problems - II
Lecture 23 - Laplace Transform of RL, RC Circuit
Lecture 24 - Z-Transform
Lecture 25 - Z-Transform Properties - I
Lecture 26 - Z-Transform Properties - II
Lecture 27 - Z-Transform of LTI Systems
Lecture 28 - Z-Transform Examples - I
Lecture 29 - Z-Transform Examples - II

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 69 - Group/Phase Delay - Part I
Lecture 70 - Group/Phase Delay - Part II
Lecture 71 - IIR Filter Structures
Lecture 72 - IIR Filter Structures
Lecture 73 - IIR Filter Structures
Lecture 74 - IIR Filter Structures
Lecture 75 - IIR Filter

Subject Co-ordinator - Prof. Aditya K. Jagannatham
Co-ordinating Institute - IIT - Kanpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Vectors and Matrices - Linear Independence and Rank
Lecture 2 - Eigenvectors and Eigenvalues of Matrices and their Properties
Lecture 3 - Positive Semidefinite (PSD) and Positive Definite (PD) Matrices and their Properties
Lecture 4 - Inner Product Space and its Properties
Lecture 5 - Inner Product Space and its Properties
Lecture 6 - Properties of Norm, Gaussian Elimination and Echelon form of matrix
Lecture 7 - Gram Schmidt Orthogonalization Procedure
Lecture 8 - Null Space and Trace of Matrices
Lecture 9 - Eigenvalue Decomposition of Hermitian Matrices and Properties
Lecture 10 - Matrix Inversion Lemma (Woodbury identity)
Lecture 11 - Introduction to Convex Sets and Properties
Lecture 12 - Affine Set Examples and Application
Lecture 13 - Norm Ball and its Practical Applications
Lecture 14 - Ellipsoid and its Practical Applications
Lecture 15 - Norm Cone, Polyhedron and its Applications
Lecture 16 - Applications
Lecture 17 - Positive Semi Definite Cone And Positive Semi Definite (PSD) Matrices
Lecture 18 - Introduction to Affine functions and examples
Lecture 19 - norm balls and Matrix properties
Lecture 20 - Inverse of a Positive Definite Matrix
Lecture 21 - Example Problems
Lecture 22 - Problems on Convex Sets (Continued...)
Lecture 23 - Introduction to Convex and Concave Functions
Lecture 24 - Properties of Convex Functions with examples
Lecture 25 - Test for Convexity
Lecture 26 - Application
Lecture 27 - Jensen's Inequality and Practical Application
Lecture 28 - Jensen's Inequality application
Lecture 29 - Properties of Convex Functions

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 69 - Example problem on Optimal MIMO Power allocation (Waterfilling)
Lecture 70 - Linear objective with box constraints, Linear Programming
Lecture 71 - Example Problems II
Lecture 72 - Examples on Quadratic Optimization
Lecture 73 - Examples on Duality
Lecture 74 - Examples on Duality
Lecture 75 - Semi Definite Program (SDP) and its application
Lecture 76 - Application
Lecture 77 - Introduction to big Data
Lecture 78 - Matrix Completion Problem in Big Data
Lecture 79 - Matrix Completion Problem in Big Data
NPTEL Video Course - Electrical Engineering - NOC:Fiber-Optic Communication Systems and Techniques

Subject Co-ordinator - Dr. Pradeep Kumar K
Co-ordinating Institute - IIT - Kanpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Overview of fiber-optic communication systems
Lecture 2 - Review of Maxwell's equations
Lecture 3 - Uniform plane waves (UWPs) in free-space
Lecture 4 - Properties of UWPs (propagation constant, polarization, and Poynting vector)
Lecture 5 - Boundary conditions and reflection from a PEC
Lecture 6 - Obliquely incident waves-I (TE and TM waves, Snell's laws)
Lecture 7 - Obliquely incident waves-II (Reflection and transmission coefficients, Brewster angle)
Lecture 8 - Total internal reflection
Lecture 9 - Ray theory of dielectric slab waveguides
Lecture 10 - Transverse resonance condition for slab waveguides
Lecture 11 - Introduction to optical fibers
Lecture 12 - Ray theory of light propagation in optical fibers
Lecture 13 - Concept of waveguide modes
Lecture 14 - Systematic procedure to obtain modes of a waveguide
Lecture 15 - Systematic analysis of parallel plate metallic waveguide
Lecture 16 - Systematic analysis of dielectric slab waveguides
Lecture 17 - Further discussion on slab waveguides
Lecture 18 - Modal analysis of step index optical fiber
Lecture 19 - Properties of modes of step-index optical fiber - I
Lecture 20 - Properties of modes of step-index optical fiber - II
Lecture 21 - Linearly polarized modes
Lecture 22 - Attenuation and power loss in fibers
Lecture 23 - Introduction to dispersion in fibers
Lecture 24 - Mathematical modelling of dispersion
Lecture 25 - Pulse propagation equation and its solution
Lecture 26 - Pre-chirped pulses and Inter and Intra-modal dispersion in optical fibers
Lecture 27 - Beam Propagation Method
Lecture 28 - Polarization Effects on Pulse Propagation
Lecture 29 - Modes in Optical Fibres and Pulse Propagation in Optical Fibres

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Graded Index Fibers
Lecture 31 - Light Sources, Detectors and Amplifiers
Lecture 32 - Basics of Lasers-I (Structure of Lasers, Process of Photon Emission)
Lecture 33 - Basics of Lasers-II (Einstein's Theory of Radiation)
Lecture 34 - Basics of Lasers-III (Population Inversion and Rate Equation for Lasers)
Lecture 35 - Basic Properties of Semiconductor Laser-I (Energy Gap, Intrinsic and Extrinsic Semiconductors)
Lecture 36 - Basic Properties of Semiconductor Laser-II (Fermi Level)
Lecture 37 - Optical Properties of Semiconductors-I (Direct Bandgap and Indirect Bandgap, Density of States)
Lecture 38 - Optical Properties of Semiconductors-II (Gain, Absorption, Recombination rate) Homojunction Lasers
Lecture 39 - Double Heterostructure Lasers, Introduction to Quantum Well Lasers
Lecture 40 - Semiconductor Optical Amplifier
Lecture 41 - Erbium-doped fiber amplifier
Lecture 42 - Photodetectors
Lecture 43 - Noise in Photodetectors
Lecture 44 - Introduction to WDM components
Lecture 45 - Couplers, Circulators, FRM and Filters
Lecture 46 - Filter, MUX/DEMUX, Diffraction grating (FBG and Long period grating)
Lecture 47 - Optical Modulators-I (Current modulation
Lecture 48 - Optical Modulators-II (Electro-optic modulators)
Lecture 49 - Review of Communication Concepts-I (Deterministic and Random Signals, Baseband and Passband Signals)
Lecture 50 - Review of Communication Concepts-II (Signal and vectors, Signal energy, Orthonormal basis functions)
Lecture 51 - Intensity modulation/ Direct Detection
Lecture 52 - BER discussion for OOK systems
Lecture 53 - Higher order modulation and Coherent Receiver
Lecture 54 - Coherent receiver for BPSK systems and BER calculation
Lecture 55 - Recovering Polarization
Lecture 56 - DSP algorithms for Chromatic dispersion mitigation
Lecture 57 - DSP algorithms for Carrier phase estimation - I
Lecture 58 - DSP algorithms for Carrier phase estimation - II
Lecture 59 - Nonlinear effects in fiber
Lecture 60 - Four wave mixing, Loss measurement, Dispersion measurement
Lecture 61 - Lab Demonstration (Laser diode characteristics, Loss measurement, Optical Intensity Modulation)
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC: Electromagnetic Waves in Guided and Wireless Media
Subject Co-ordinator - Dr. Pradeep Kumar K
Co-ordinating Institute - IIT - Kanpur
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction and Types of Transmission Lines
Lecture 2 - Distributed Circuit Model of Uniform Transmission Line
Lecture 3 - Voltage and Current Equation of the Transmission line
Lecture 4 - Sinusoidal Excitation of Transmission Line (Propagation constant, Characteristic Impedance)
Lecture 5 - Properties of Transmission Line (Reflection Coefficient, Input Impedance, Standing Wave Ratio)
Lecture 6 - Power Calculations and Introduction to Smith Chart
Lecture 7 - Smith Chart
Lecture 8 - Additional Applications of Smith Chart
Lecture 9 - Time domain Analysis of Transmission Line - I
Lecture 10 - Time domain Analysis of Transmission Line - II
Lecture 11 - Usage of Lattice Diagrams
Lecture 12 - TDR analysis of Transmission Lines
Lecture 13 - Introduction to Propagation of Electromagnetic Waves
Lecture 14 - Uniform Plane Waves - I
Lecture 15 - Uniform Plane Waves - II
Lecture 16 - Poynting Vector, Average Power, Polarization
Lecture 17 - Uniform Plane Waves in Lossy Medium
Lecture 18 - Normal Incidence of Plane Waves
Lecture 19 - Oblique Incidence of Plane Waves - I
Lecture 20 - Oblique Incidence of Plane Waves - II
Lecture 21 - Total Internal Reflection
Lecture 22 - Slab Waveguides
Lecture 23 - Optical Fibers
Lecture 24 - Parallel Plate Waveguides
Lecture 25 - Rectangular Waveguides
Lecture 26 - Modes of Rectangular Waveguides
Lecture 27 - Waveguides summary and Introduction to Radiation
Lecture 28 - Solution to Electric Scalar Potential and Magnetic Vector Potential Equations
Lecture 29 - Further discussion on Magnetic Vector Potential and Elementary Hertzian Dipole

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Near field and Far-field Antenna and Properties of Antennas
Lecture 31 - Linear antenna - I
Lecture 32 - Linear antenna - II and Properties of Transmitting and Receiving Antenna
Lecture 33 - Friis Transmission Formula
Lecture 34 - Antenna Array
Lecture 35 - Wireless Channel
Lecture 36 - Further discussion on Wireless Channel Modelling
Lecture 37 - Diffraction - I
Lecture 38 - Diffraction - II
Lecture 39 - Distribution of Laser Beam
Lecture 40 - Interference (Double slit experiment, Fabry Perot Interferometer)
Lecture 41 - Summary
Lecture 1 - Introduction
Lecture 2 - Operating Principles and Construction of Single Phase Transformers
Lecture 3 - Modeling of Single Phase Transformers
Lecture 4 - Equivalent Circuits of Single Phase Transformers
Lecture 5 - Testing of Single Phase Transformers
Lecture 6 - Efficiency of Single Phase Transformers
Lecture 7 - Voltage Regulation of Single Phase Transformers
Lecture 8 - Parallel Operation of Single Phase Transformers
Lecture 9 - Harmonics and Switching Transients in Single Phase Transformers
Lecture 10 - Introduction to Three Phase Transformer
Lecture 11 - Construction of Three Phase Transformers
Lecture 12 - Three Phase Transformer Connections
Lecture 13 - Three Phase Transformer Phase Groups Part - I
Lecture 14 - Three Phase Transformer Phase Groups Part - II
Lecture 15 - Analysis and Testing of Three Phase Transformers
Lecture 16 - Operation of Three Phase Transformers
Lecture 17 - Auto Transformers
Lecture 18 - Three Winding Transformers
Lecture 19 - Scott Connected Transformers
Lecture 20 - Potential and Current Transformers
Lecture 21 - Operating Principles of DC Machines
Lecture 22 - Constructional Features of DC Machines
Lecture 23 - Generated EMF and Torque in DC Machines
Lecture 24 - Armature Reaction
Lecture 25 - Commutation in DC Machines
Lecture 26 - Separately Excited DC Generators
Lecture 27 - DC Shunt Generators
Lecture 28 - Compound DC Generators
Lecture 29 - Interconnected DC Generators
Lecture 30 - Characteristics of DC Shunt Motors
Lecture 31 - Starting of DC Shunt Motors
Lecture 32 - Speed Control of DC Shunt Motors
Lecture 33 - Braking of DC Shunt Motors
Lecture 34 - Electronic Control of DC Shunt Motors
Lecture 35 - Testing of DC Shunt Motors
Lecture 36 - Characteristics of DC Series Motors
Lecture 37 - Starting and Braking of DC Series Motors
Lecture 38 - Speed Control and of DC Series Motors
Lecture 39 - Testing of DC Series Motors
Lecture 40 - Characteristics of Compound DC Series Motors
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Optimal Control

Subject Co-ordinator - Prof. G.D. Ray

Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Optimization Problem
Lecture 2 - Introduction to Optimization Problem
Lecture 3 - Optimality Conditions for Function of Several Variables
Lecture 4 - Optimality Conditions for Function of Several Variables (Continued.)
Lecture 5 - Unconstrained Optimization Problem (Numerical Techniques)
Lecture 6 - Solution of Unconstrained Optimization Problem Using Conjugate Quadrant Method and Networks Method
Lecture 7 - Solution of Unconstrained Optimization Problem Using Conjugate Quadrant Method and Networks Method (Continued.)
Lecture 8 - Solution of Constraint Optimization Problem-Karush-Kuhn Tucker (KKT) Conditions
Lecture 9 - Solution of Constraint Optimization Problem-Karush-Kuhn Tucker (KKT) Conditions (Continued.)
Lecture 10 - Problem and Solution Session
Lecture 11 - Post Optimality Analysis, Convex Function and its Properties
Lecture 12 - Post Optimality Analysis, Convex Function and its Properties (Continued.)
Lecture 13 - Quadratic Optimization Problem Using Linear Programming
Lecture 14 - Matrix form of the Simplex Method
Lecture 15 - Matrix form of the Simplex Method (Continued.)
Lecture 16 - Solution of Linear Programming Using Simplex Method
Lecture 17 - Solution of Linear Programming Using Simplex Method
Lecture 18 - Solution of LP Problems with Two Phase Method
Lecture 19 - Solution of LP Problems with Two Phase Method (Continued.)
Lecture 20 - Standard Primal and Dual Problems
Lecture 21 - Relationship Between Primal and Dual Variables
Lecture 22 - Solution of Quadratic Programming Problem Using Simplex Method
Lecture 23 - Interior Point Method for Solving Optimization Problems
Lecture 24 - Interior Point Method for Solving Optimization Problems (Continued.)
Lecture 25 - Solution of Nonlinear Programming Problem Using Exterior Penalty Function Method
Lecture 26 - Solution of Nonlinear Programming Problem Using Exterior Penalty Function Method (Continued.)
Lecture 27 - Solution of Nonlinear Programming Problem Using Interior Penalty Function Method
Lecture 28 - Solution of Nonlinear Programming Problem Using Interior Penalty Function Method (Continued.)
Lecture 29 - Multiobjective Optimization Problem

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Dynamic Optimization Problem
Lecture 31 - Dynamic Optimization Problem
Lecture 32 - Dynamic Optimization Problem
Lecture 33 - Numerical Example and Solution of Optimal Control Problem using Calculus of Variation principle
Lecture 34 - Numerical Example and Solution of Optimal Control Problem using Calculus of Variation principle (Continued.)
Lecture 35 - Hamiltonian Formulation for solution of optimal Control problem and numerical example
Lecture 36 - Hamiltonian Formulation for solution of optimal Control problem and numerical example (Continued)
Lecture 37 - Performance Indices and Linear Quadratic Regulator Problem
Lecture 38 - Performance Indices and Linear Quadratic Regulator Problem (Continued.)
Lecture 39 - Solution and Stability Analysis of Finite - time LQR Problem
Lecture 40 - Solution and Infinite - time LQR Problem and Stability Analysis
Lecture 41 - Numerical Example and Methods for Solution of A.R.E.
Lecture 42 - Numerical Example and Methods for Solution of A.R.E. (Continued.)
Lecture 43 - Frequency Domain Interpretation of LQR Controlled System
Lecture 44 - Gain and Phase Margin of LQR Controlled System
Lecture 45 - The Linear Quadratic Gaussian Problem
Lecture 46 - Loop-Transfer Recovery
Lecture 47 - Dynamic Programming for Discrete Time Systems
Lecture 48 - Minimum â□□ Time Control of a Linear Time Invariant System
Lecture 49 - Solution of Minimum â□□ Time Control Problem with an Example
Lecture 50 - Constraint in Control Inputs and State Variables
Lecture 51 - Constraint in Control Inputs and State Variables (Continued...)
Lecture 52 - Norms for Vectors, Matrices, Signals and Linear Systems
Lecture 53 - Signal and System Norms
Lecture 54 - Internal Stability, Sensitivity and Complementary Sensitivity Functions
Lecture 55 - Internal Stability, Sensitivity and Complementary Sensitivity Functions (Continued...)
Lecture 56 - Plant Uncertainty and Standard form for Robust Stability Analysis
Lecture 57 - Plant Uncertainty and Standard form for Robust Stability Analysis (Continued...)
Lecture 58 - Frequency Response of Linear System and Singular Value Decomposition of System
Lecture 59 - Control Problem Statement in H- alpha Framework
Lecture 60 - Control Problem Statement in H - alpha Framework (Continued...)
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Chaos, Fractals and Dynamic Systems

Subject Co-ordinator - Prof. S. Banerjee
Co-ordinating Institute - IIT - Kharagpur
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Representations of Dynamical Systems
Lecture 2 - Vector Fields of Nonlinear Systems
Lecture 3 - Limit Cycles
Lecture 4 - The Lorenz Equation - I
Lecture 5 - The Lorenz Equation - II
Lecture 6 - The Rossler Equation and Forced Pendulum
Lecture 7 - The Chua's Circuit
Lecture 8 - Discrete Time Dynamical Systems
Lecture 9 - The Logistic Map and Period doubling
Lecture 10 - Flip and Tangent Bifurcations
Lecture 11 - Intermittency Transcritical and pitchfork
Lecture 12 - Two Dimensional Maps
Lecture 13 - Bifurcations in Two Dimensional Maps
Lecture 14 - Introduction to Fractals
Lecture 15 - Mandelbrot Sets and Julia Sets
Lecture 16 - The Space Where Fractals Live
Lecture 17 - Interactive Function Systems
Lecture 18 - IFS Algorithms
Lecture 19 - Fractal Image Compression
Lecture 20 - Stable and Unstable Manifolds
Lecture 21 - Boundary Crisis and Interior Crisis
Lecture 22 - Statistics of Chaotic Attractors
Lecture 23 - Matrix Times Circle
Lecture 24 - Lyapunov Exponent
Lecture 25 - Frequency Spectra of Orbits
Lecture 26 - Dynamics on a Torus
Lecture 27 - Dynamics on a Torus
Lecture 28 - Analysis of Chaotic Time Series
Lecture 29 - Analysis of Chaotic Time Series

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Lyapunou Function and Centre Manifold Theory
Lecture 31 - Non-Smooth Bifurcations
Lecture 32 - Non-Smooth Bifurcations
Lecture 33 - Normal from for Piecewise Smooth 2D Maps
Lecture 34 - Bifurcations in Piecewise Linear 2D Maps
Lecture 35 - Bifurcations in Piecewise Linear 2D Maps
Lecture 36 - Multiple Attractor Bifurcation and Dangerous
Lecture 37 - Dynamics of Discontinuous Maps
Lecture 38 - Introduction to Floquet Theory
Lecture 39 - The Monodromy Matrix and the Saltation Matrix
Lecture 40 - Control of Chaos
NPTEL Video Course - Electrical Engineering - Digital Signal Processing

Subject Co-ordinator - Prof. T.K. Basu
Co-ordinating Institute - IIT - Kharagpur

Lecture 1 - Discrete Time Signal and System
Lecture 2 - Discrete Time Signal and System (Continued...)
Lecture 3 - Discrete Time Signal and System (Continued...)
Lecture 4 - Frequency Domain Representation of Discrete Signals
Lecture 5 - Z-Transform
Lecture 6 - Z-Transform (Continued...)
Lecture 7 - Solution of Difference Equation
Lecture 8 - Tutorial on Discrete Time Signals & Their Transforms
Lecture 9 - Relation Between Discrete Time and Continuous Signals
Lecture 10 - Discrete Fourier Transform (DFT)
Lecture 11 - Discrete Fourier Transform (DFT) (Continued...)
Lecture 12 - Discrete Fourier Transform (DFT) (Continued...)
Lecture 13 - State Space Representation
Lecture 14 - Filters Introduction
Lecture 15 - FIR Filters
Lecture 16 - FIR Filters (Continued...) Introduction to IIR Filters
Lecture 17 - IIR Filters (Continued...)
Lecture 18 - IIR Filters (Continued...)
Lecture 19 - IIR Filters (Continued...)
Lecture 20 - Tutorial & Introduction to Computer Aided Design of Filters
Lecture 21 - Computer Aided Design of Filters
Lecture 22 - FFT and Computer Aided Design of Filters
Lecture 23 - Introduction to Lattice Filter
Lecture 24 - Lattice Filter (Continued...)
Lecture 25 - Effects of Quantization
Lecture 26 - Effects of Quantization (Continued...)
Lecture 27 - Effects of Quantization (Continued...)
Lecture 28 - Effects of Quantization (Continued...)
Lecture 29 - Random Signals

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Relationship Between Real and Imaginary Parts of DTFT
Lecture 31 - Relationship Between Real and Imaginary Parts of DTFT
Lecture 32 - Relationship Between Real and Imaginary Parts of DTFT
Lecture 33 - Multi rate Signal Processing
Lecture 34 - Multi rate Signal Processing (Continued...)
Lecture 35 - Polyphase Decomposition
NPTEL Video Course - Electrical Engineering - Dynamics of Physical Systems

Subject Co-ordinator - Prof. S. Banerjee

Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to System Elements
Lecture 2 - Newton's Method and Constraints
Lecture 3 - Derivation of the Lagrangian Equation
Lecture 4 - Using the lagrangian Equation to Obtain Differential Equations (Part-I)
Lecture 5 - Using the lagrangian Equation to Obtain Differential Equations (Part-II)
Lecture 6 - Using the lagrangian Equation to Obtain Differential Equations (Part-III)
Lecture 7 - Using the lagrangian Equation to Obtain Differential Equations (Part-IV)
Lecture 8 - Obtaining First Order Equations
Lecture 9 - Application of the Hamiltonian Method
Lecture 10 - Obtaining Differential Equations Using Kirchoff's Laws
Lecture 11 - The Graph Theory Approach for Electrical Circuits (Part-I)
Lecture 12 - The Graph Theory Approach for Electrical Circuits (Part-II)
Lecture 13 - The Bond Graph Approach - I
Lecture 14 - The Bond Graph Approach - II
Lecture 15 - The Bond Graph Approach - III
Lecture 16 - The Bond Graph Approach - IV
Lecture 17 - The Bond Graph Approach - V
Lecture 18 - The Bond Graph Approach - VI
Lecture 19 - The Bond Graph Approach - VII
Lecture 20 - Numerical Solution of Differential Equations
Lecture 21 - Dynamics in the State Space
Lecture 22 - Vector Field Around Equilibrium Points - I
Lecture 23 - Vector Field Around Equilibrium Points - II
Lecture 24 - Vector Field Around Equilibrium Points - III
Lecture 25 - Vector Field Around Equilibrium Points - IV
Lecture 26 - High Dimensional Linear Systems
Lecture 27 - Linear Systems with External Input - I
Lecture 28 - Linear Systems with External Input - II
Lecture 29 - Linear Systems with External Input - III
Lecture 30 - Dynamics of Nonlinear Systems - I
Lecture 31 - Dynamics of Nonlinear Systems - II
Lecture 32 - Dynamics of Nonlinear Systems - III
Lecture 33 - Discrete-Time Dynamical Systems - I
Lecture 34 - Discrete-Time Dynamical Systems - II
Lecture 30 - Tidal Energy
Lecture 31 - Tidal Energy
Lecture 32 - Tidal Energy
Lecture 33 - Ocean Thermal Energy Conversion
Lecture 34 - Solar Pond and Wave Power
Lecture 35 - Geothermal Energy
Lecture 36 - Solar Distillation and Biomass Energy
Lecture 37 - Energy Storage
Lecture 38 - Magneto hydrodynamic Power Generation
Lecture 39 - Magneto hydrodynamic Power Generation
Lecture 40 - Hydrogen Economy
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Estimation of Signals and Systems

Subject Co-ordinator - Prof. S. Mukhopadhyay

Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction
Lecture 2 - Probability Theory
Lecture 3 - Random Variables
Lecture 4 - Function of Random Variable Joint Density
Lecture 5 - Mean and Variance
Lecture 6 - Random Vectors Random Processes
Lecture 7 - Random Processes and Linear Systems
Lecture 8 - Some Numerical Problems
Lecture 9 - Miscellaneous Topics on Random Process
Lecture 10 - Linear Signal Models
Lecture 11 - Linear Mean Sq.Error Estimation
Lecture 12 - Auto Correlation and Power Spectrum Estimation
Lecture 13 - Z-Transform Revisited Eigen Vectors/Values
Lecture 14 - The Concept of Innovation
Lecture 15 - Last Squares Estimation Optimal IIR Filters
Lecture 16 - Introduction to Adaptive Filters
Lecture 17 - State Estimation
Lecture 18 - Kalman Filter-Model and Derivation
Lecture 19 - Kalman Filter-Derivation (Continued...)
Lecture 20 - Estimator Properties
Lecture 21 - The Time-Invariant Kalman Filter
Lecture 22 - Kalman Filter-Case Study
Lecture 23 - System identification Introductory Concepts
Lecture 24 - Linear Regression-Recursive Least Squares
Lecture 25 - Variants of LSE
Lecture 26 - Least Square Estimation
Lecture 27 - Model Order Selection Residual Tests
Lecture 28 - Practical Issues in Identification
Lecture 29 - Estimation Problems in Instrumentation and Control

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Conclusion
NPTEL Video Course - Electrical Engineering - Illumination Engineering

Subject Co-ordinator - Prof. N.K. Kishore
Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Illumination Engineering
Lecture 2 - Instructional Objectives
Lecture 3 - Eye and Vision - I
Lecture 4 - Eye and Vision - II
Lecture 5 - Laws of Illumination
Lecture 6 - Photometry
Lecture 7 - Incandescent Lamps
Lecture 8 - Discharge Lamps - I
Lecture 9 - Discharge Lamps - II
Lecture 10 - Discharge Lamps - III
Lecture 11 - Illumination Systems - I
Lecture 12 - Illumination Systems - II
Lecture 13 - Glare
Lecture 14 - Color
Lecture 15 - Interior Lighting
Lecture 16 - Sports Lighting
Lecture 17 - Road Lighting
Lecture 18 - Lighting Calculations
Lecture 19 - Lighting Applications
Lecture 20 - Conclusions on Illumination Engineering

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
NPTEL Video Course - Electrical Engineering - Industrial Automation and Control

Subject Co-ordinator - Prof. S. Sen, Prof. S. Mukhopadhyay
Co-ordinating Institute - IIT - Kharagpur
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1</td>
<td>Introduction</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>Architecture of Industrial Automation Systems</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>Measurement Systems Characteristics</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>Temperature Measurement</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>Pressure, Force and Torque Sensors</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>Motion Sensing</td>
</tr>
<tr>
<td>Lecture 7</td>
<td>Flow Measurement</td>
</tr>
<tr>
<td>Lecture 8</td>
<td>Signal Conditioning</td>
</tr>
<tr>
<td>Lecture 9</td>
<td>Signal Conditioning (Continued.)</td>
</tr>
<tr>
<td>Lecture 10</td>
<td>Data Acquisition Systems</td>
</tr>
<tr>
<td>Lecture 11</td>
<td>Introduction to Automatic Control</td>
</tr>
<tr>
<td>Lecture 12</td>
<td>P-I-D Control</td>
</tr>
<tr>
<td>Lecture 13</td>
<td>PID Control Tuning</td>
</tr>
<tr>
<td>Lecture 14</td>
<td>Feedforward Control Ratio Control</td>
</tr>
<tr>
<td>Lecture 15</td>
<td>Time Delay Systems and Inverse Response Systems</td>
</tr>
<tr>
<td>Lecture 16</td>
<td>Special Control Structures</td>
</tr>
<tr>
<td>Lecture 17</td>
<td>Concluding Lesson on Process Control</td>
</tr>
<tr>
<td>Lecture 18</td>
<td>Introduction to Sequence Control, PLC, RLL</td>
</tr>
<tr>
<td>Lecture 19</td>
<td>Sequence Control. Scan Cycle, Simple RLL Programs</td>
</tr>
<tr>
<td>Lecture 20</td>
<td>Sequence Control. More RLL Elements, RLL Syntax</td>
</tr>
<tr>
<td>Lecture 21</td>
<td>A Structured Design Approach to Sequence</td>
</tr>
<tr>
<td>Lecture 22</td>
<td>PLC Hardware Environment</td>
</tr>
<tr>
<td>Lecture 23</td>
<td>Introduction To CNC Machines</td>
</tr>
<tr>
<td>Lecture 24</td>
<td>Contour generation and Motion Control</td>
</tr>
<tr>
<td>Lecture 25</td>
<td>Flow Control Valves</td>
</tr>
<tr>
<td>Lecture 26</td>
<td>Hydraulic Control Systems - I</td>
</tr>
<tr>
<td>Lecture 27</td>
<td>Hydraulic Control Systems - II</td>
</tr>
<tr>
<td>Lecture 28</td>
<td>Industrial Hydraulic Circuit</td>
</tr>
<tr>
<td>Lecture 29</td>
<td>Pneumatic Control Systems - I</td>
</tr>
</tbody>
</table>

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
<table>
<thead>
<tr>
<th>Lecture 30</th>
<th>Pneumatic Systems - II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 31</td>
<td>Energy Savings with Variable Speed Drives</td>
</tr>
<tr>
<td>Lecture 32</td>
<td>DC Motor Drives</td>
</tr>
<tr>
<td>Lecture 33</td>
<td>DC and BLDC Servo Drives</td>
</tr>
<tr>
<td>Lecture 34</td>
<td>Induction Motor Drives</td>
</tr>
<tr>
<td>Lecture 35</td>
<td>Step Motor Drives BLDC Drives</td>
</tr>
<tr>
<td>Lecture 36</td>
<td>Embedded Systems</td>
</tr>
<tr>
<td>Lecture 37</td>
<td>The Fieldbus Network - I</td>
</tr>
<tr>
<td>Lecture 38</td>
<td>The Fieldbus Network - II</td>
</tr>
<tr>
<td>Lecture 39</td>
<td>Higher Level Automation Systems</td>
</tr>
<tr>
<td>Lecture 40</td>
<td>Course Review and Conclusion</td>
</tr>
</tbody>
</table>
NPTEL Video Course - Electrical Engineering - Industrial Instrumentation

Subject Co-ordinator - Prof. Alok Barua
Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Industrial Instrumentation
Lecture 2 - Dynamic Characteristics
Lecture 3 - Dynamic Characteristics (Continued.)
Lecture 4 - Strain gauge
Lecture 5 - Load cell
Lecture 6 - Torque Measurement
Lecture 7 - Thermistor
Lecture 8 - Thermocouples
Lecture 9 - Resistance Temperature Detector
Lecture 10 - LVDT
Lecture 11 - Capacitance Transducers
Lecture 12 - Flowmeter - I
Lecture 13 - Flowmeter - II
Lecture 14 - Flowmeter - III
Lecture 15 - Flowmeter - IV
Lecture 16 - Flowmeter - V
Lecture 17 - Problems on Temperature Sensors
Lecture 18 - Pressure Sensors
Lecture 19 - Low Pressure Measurement
Lecture 20 - pH and Viscosity Measurement
Lecture 21 - Problem and Solutions On Industrial Instrumentation
Lecture 22 - Signal Conditioning Circuits - I
Lecture 23 - Signal Conditioning Circuits - II
Lecture 24 - Piezoelectric Sensors
Lecture 25 - Ultrasonic Sensors
Lecture 26 - Nucleonic Instrumentation
Lecture 27 - Measurement Of Magnetic Field
Lecture 28 - Optoelectronic Sensor - I
Lecture 29 - Optoelectronic Sensor - II

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Synchro
Lecture 31 - Dissolved Oxygen Sensors - I
Lecture 32 - Dissolved Oxygen Sensors - II
Lecture 33 - Flapper - Nozzle
Lecture 34 - Smart Sensors
Lecture 35 - Chromatography - I
Lecture 36 - Chromatography - II
Lecture 37 - Pollution Measurement
Lecture 38 - Control Valve - I
Lecture 39 - Control Valve - II
Lecture 40 - Signal Conditioning Integrated Circuits
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Networks Signals and Systems

Subject Co-ordinator - Prof. T.K. Basu

Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Network Elements and Sources
Lecture 2 - Introduction to Linearity and Nonlinearity
Lecture 3 - Distributed & Lumpared Parameters 2-port Networks
Lecture 4 - Two-port Parameters Short Circuit, Open Circuit
Lecture 5 - Tutorial
Lecture 6 - Locus Diagram - Introduction to Signals
Lecture 7 - Signals (Continued.) Laplace Transforms
Lecture 8 - Laplace Transform (Continued.)
Lecture 9 - Tutorial on Laplace Transform
Lecture 10 - Frequency Response Bode Plot
Lecture 11 - Bode Plot (Continued.)
Lecture 12 - Bode Plot (Continued.) - Poles & Zeros
Lecture 13 - Driving Point Immitance Functions - Realisability Conditions
Lecture 14 - Two - Element Synthesis
Lecture 15 - Two - Element Synthesis (Continued.)
Lecture 16 - Tutorial
Lecture 17 - Tutorial
Lecture 18 - Graph Theory
Lecture 19 - Graph Theory (Continued.)
Lecture 20 - Graph Theory (Continued.)
Lecture 21 - Graph Theory (Continued.)
Lecture 22 - Image Impedance, Iterative Impedance
Lecture 23 - Image Impedance, Iterative Impedance
Lecture 24 - Characteristic Impedance and Design of Filters
Lecture 25 - Analysis of Resistive Networks Computer Aided
Lecture 26 - R-L-C Two-Terminal Network
Lecture 27 - Parts of Network Functions
Lecture 28 - Parts of Network Functions (Continued.)
Lecture 29 - Tutorial

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 – Tutorial (Continued.)
Lecture 31 – Tutorial
Lecture 32 – Synthesis of 2-port Network
Lecture 33 – Synthesis of 2-port Network (Continued.)
Lecture 34 – Synthesis of 2-port Network (Continued.)
Lecture 35 – Fourier Series
Lecture 36 – Fourier Series (Continued.)
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Power System Analysis

Subject Co-ordinator - Prof. A.K. Sinha
Co-ordinating Institute - IIT - Kharagpur
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Power system analysis
Lecture 2 - Introduction to Single Line Diagram
Lecture 3 - Transmission Line Parameters
Lecture 4 - Inductance Calculation (Three Phase)
Lecture 5 - Transmission Line Capacitance
Lecture 6 - Transmission Line Capacitance (Continued..)
Lecture 7 - Transmission Line Modeling
Lecture 8 - Transmission Line Modeling Long Line
Lecture 9 - Transmission Line Steady State Operation
Lecture 10 - Transmission Line Steady State Control Voltage
Lecture 11 - Transmission System A Review
Lecture 12 - Transformer Model
Lecture 13 - Synchronous Machine Model
Lecture 14 - Synchronous Machine Model
Lecture 15 - Load Model
Lecture 16 - Power Flow - I
Lecture 17 - Power Flow - II
Lecture 18 - Power Flow - III
Lecture 19 - Power Flow - IV
Lecture 20 - Power Flow - V
Lecture 21 - Power Flow - VI
Lecture 22 - Power Flow - VII
Lecture 23 - Review of Power System Component Models
Lecture 24 - Review of Power Flow Study
Lecture 25 - Short Circuit Analysis
Lecture 26 - Symmetrical Component Analysis
Lecture 27 - Sequence Networks
Lecture 28 - Unbalanced Fault Analysis
Lecture 29 - Unbalanced Fault Analysis

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Fault Analysis for Large power Systems
Lecture 31 - Bus Impedance Matrix
Lecture 32 - Asymmetrical Fault Analysis Using Z - Bus
Lecture 33 - Power System Stability - I
Lecture 34 - Power System Stability - II
Lecture 35 - Power System Stability - III
Lecture 36 - Power System Stability - IV
Lecture 37 - Power System Stability - V
Lecture 38 - Power System Stability - VI
Lecture 39 - Power System Stability - VII
Lecture 40 - Power System Stability - VIII
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC:Industrial Automation and Control

Subject Co-ordinator - Prof. S. Mukhopadhyay
Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction
Lecture 2 - Introduction (Continued...)
Lecture 3 - Architecture of Industrial Automation Systems
Lecture 4 - Architecture of Industrial Automation Systems (Continued...)
Lecture 5 - Measurement Systems Characteristics
Lecture 6 - Measurement Systems Characteristics (Continued...)
Lecture 7 - Data Acquisition Systems
Lecture 8 - Data Acquisition Systems (Continued...)
Lecture 9 - Introduction to Automatic Control
Lecture 10 - Introduction to Automatic Control (Continued...)
Lecture 11 - P-I-D Control
Lecture 12 - P-I-D Control (Continued...)
Lecture 13 - PID Control Tuning
Lecture 14 - PID Control Tuning (Continued...)
Lecture 15 - Feedforward Control Ratio Control
Lecture 16 - Feedforward Control Ratio Control (Continued...)
Lecture 17 - Time Delay Systems and Inverse Response Systems
Lecture 18 - Time Delay Systems and Inverse Response Systems (Continued...)
Lecture 19 - Special Control Structures
Lecture 20 - Special Control Structures (Continued...)
Lecture 21 - Concluding Lesson on Process Control (Self-study)
Lecture 22 - Introduction to Sequence Control, PLC, RLL
Lecture 23 - Introduction to Sequence Control, PLC, RLL (Continued...)
Lecture 24 - Sequence Control, Scan Cycle, Simple RLL Programs
Lecture 25 - Sequence Control, Scan Cycle, Simple RLL Programs (Continued...)
Lecture 26 - Sequence Control, More RLL Elements, RLL Syntax
Lecture 27 - Sequence Control, More RLL Elements, RLL Syntax (Continued...)
Lecture 28 - A Structured Design Approach to Sequence Control
Lecture 29 - A Structured Design Approach to Sequence Control (Continued...)

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - PLC Hardware Environment
Lecture 31 - PLC Hardware Environment (Continued...)
Lecture 32 - Flow Control Valves
Lecture 33 - Flow Control Valves (Continued...)
Lecture 34 - Hydraulic Control Systems - I
Lecture 35 - Hydraulic Control Systems - I (Continued...)
Lecture 36 - Hydraulic Control Systems - II
Lecture 37 - Hydraulic Control Systems - II (Continued...)
Lecture 38 - Industrial Hydraulic Circuit
Lecture 39 - Industrial Hydraulic Circuit (Continued...)
Lecture 40 - Pneumatic Control Systems - I
Lecture 41 - Pneumatic Control Systems - I (Continued...)
Lecture 42 - Pneumatic Systems - II
Lecture 43 - Pneumatic Systems - II (Continued...)
Lecture 44 - Energy Savings with Variable Speed Drives
Lecture 45 - Energy Savings with Variable Speed Drives (Continued...)
Lecture 46 - Introduction To CNC Machines
Lecture 47 - Introduction To CNC Machines
Lecture 48 - The Fieldbus Network - I
Lecture 49 - The Fieldbus Network - I (Continued...)
Lecture 50 - Higher Level Automation Systems
Lecture 51 - Higher Level Automation Systems (Continued...)
Lecture 52 - Course Review and Conclusion (Self Study)
NPTEL Video Course - Electrical Engineering - NOC: Medical Image Analysis

Subject Co-ordinator - Prof. Debdoott Sheet

Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Medical Image Analysis
Lecture 2 - X Ray and CT Imaging
Lecture 3 - Magnetic Resonance Imaging
Lecture 4 - Ultrasound Imaging
Lecture 5 - Optical Microscopy and Molecular Imaging
Lecture 6 - Texture in Medical Images
Lecture 7 - Region Growing and Clustering
Lecture 8 - Random Walks for Segmentation
Lecture 9 - Active Contours for Segmentation
Lecture 10 - Systematic Evaluation and Validation
Lecture 11 - Decision Trees for Segmentation and Classification
Lecture 12 - Random Forests for Segmentation and Classification
Lecture 13 - Neural Networks for Segmentation and Classification
Lecture 14 - Deep Learning for Medical Image Analysis
Lecture 15 - Deep Learning for Medical Image Analysis (Continued...)
Lecture 16 - Retinal Vessel Segmentation
Lecture 17 - Vessel Segmentation in Computed Tomography Scan of Lungs
Lecture 18
Lecture 19 - Tissue Characterization in Ultrasound
Lecture 20
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC:Biomedical Signal Processing

Subject Co-ordinator - Prof. Sudipta Mukhopadhyay

Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Motivation
Lecture 2 - Preliminaries
Lecture 3 - Biomedical Signal Origin and Dynamics
Lecture 4 - Biomedical Signal Origin and Dynamics (Continued...)
Lecture 5 - Biomedical Signal Origin and Dynamics (Continued...)
Lecture 6 - Biomedical Signal Origin and Dynamics (Continued...)
Lecture 7 - Artifact Removal
Lecture 8 - Artifact Removal (Continued...)
Lecture 9 - Artifact Removal (Continued...)
Lecture 10 - Artifact Removal (Continued...)
Lecture 11 - Artifact Removal (Continued...)
Lecture 12 - Artifact Removal (Continued...)
Lecture 13 - Artifact Removal (Continued...)
Lecture 14 - Artifact Removal (Continued...)
Lecture 15 - Artifact Removal (Continued...)
Lecture 16 - Artifact Removal (Continued...)
Lecture 17 - Artifact Removal (Continued...)
Lecture 18 - Event Detection
Lecture 19 - Event Detection (Continued...)
Lecture 20 - Event Detection (Continued...)
Lecture 21 - Event Detection (Continued...)
Lecture 22 - Event Detection (Continued...)
Lecture 23 - Event Detection (Continued...)
Lecture 24 - Event Detection (Continued...)
Lecture 25 - Homomorphic Processing
Lecture 26 - Homomorphic Processing (Continued...)
Lecture 27 - Waveform Analysis
Lecture 28 - Waveform Analysis (Continued...)
Lecture 29 - Waveform Analysis

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Course - Electrical Engineering - NOC: Microprocessors and Microcontrollers

Subject Co-ordinator - Prof. Santanu Chattopadhyay

Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction
Lecture 2 - Introduction (Continued...)
Lecture 3 - Introduction (Continued...)
Lecture 4 - Basic Computer Organization
Lecture 5 - Basic computer organization
Lecture 6 - Basic Computer Organization
Lecture 7 - 8085 Microprocessors
Lecture 8 - 8085 Microprocessors (Continued...)
Lecture 9 - 8085 Microprocessors (Continued...)
Lecture 10 - 8085 Microprocessors (Continued...)
Lecture 11 - 8085 Microprocessors (Continued...)
Lecture 12 - 8085 Microprocessors (Continued...)
Lecture 13 - 8085 Microprocessors (Continued...)
Lecture 14 - 8085 Microprocessors (Continued...)
Lecture 15 - 8085 Microprocessors (Continued...)
Lecture 16 - 8085 Microprocessors (Continued...)
Lecture 17 - 8085 Microprocessors (Continued...)
Lecture 18 - 8085 Microprocessors (Continued...)
Lecture 19 - 8085 Microprocessors (Continued...)
Lecture 20 - 8085 Microprocessors (Continued...)
Lecture 21 - 8085 Microprocessors (Continued...)
Lecture 22 - 8085 Microprocessors (Continued...)
Lecture 23 - 8051 Microcontroller
Lecture 24 - 8051 Microcontroller (Continued...)
Lecture 25 - 8051 Microcontroller (Continued...)
Lecture 26 - 8051 Microcontroller (Continued...)
Lecture 27 - 8051 Microcontroller (Continued...)
Lecture 28 - 8051 Microcontroller (Continued...)
Lecture 29 - 8051 Microcontroller (Continued...)

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 1 - Introduction to Visual Computing
Lecture 2 - Feature Extraction for Visual Computing
Lecture 3 - Feature Extraction with Python
Lecture 4 - Neural Networks for Visual Computing
Lecture 5 - Classification with Perceptron Model
Lecture 6 - Introduction to Deep Learning with Neural Networks
Lecture 7 - Introduction to Deep Learning with Neural Networks
Lecture 8 - Multilayer Perceptron and Deep Neural Networks
Lecture 9 - Multilayer Perceptron and Deep Neural Networks
Lecture 10 - Classification with Multilayer Perceptron
Lecture 11 - Autoencoder for Representation Learning and MLP Initialization
Lecture 12 - MNIST handwritten digits classification using autoencoders
Lecture 13 - Fashion MNIST classification using autoencoders
Lecture 14 - ALL-IDB Classification using autoencoders
Lecture 15 - Retinal Vessel Detection using autoencoders
Lecture 16 - Stacked Autoencoders
Lecture 17 - MNIST and Fashion MNIST with Stacked Autoencoders
Lecture 18 - Denoising and Sparse Autoencoders
Lecture 19 - Sparse Autoencoders for MNIST classification
Lecture 20 - Denoising Autoencoders for MNIST classification
Lecture 21 - Cost Function
Lecture 22 - Classification cost functions
Lecture 23 - Optimization Techniques and Learning Rules
Lecture 24 - Gradient Descent Learning Rule
Lecture 25 - SGD and ADAM Learning Rules
Lecture 26 - Convolutional Neural Network Building Blocks
Lecture 27 - Simple CNN Model
Lecture 28 - LeNet Definition
Lecture 29 - Training a LeNet for MNIST Classification
Lecture 30 - Modifying a LeNet for CIFAR
Lecture 31 - Convolutional Autoencoder and Deep CNN
Lecture 32 - Convolutional Autoencoder for Representation Learning
Lecture 33 - AlexNet
Lecture 34 - VGGNet
Lecture 35 - Revisiting AlexNet and VGGNet for Computational Complexity
Lecture 36 - GoogLeNet - Going very deep with convolutions
Lecture 37 - GoogLeNet
Lecture 38 - ResNet - Residual Connections within Very Deep Networks and DenseNet - Densely connected networks
Lecture 39 - ResNet
Lecture 40 - DenseNet
Lecture 41 - Space and Computational Complexity in DNN
Lecture 42 - Assessing the space and computational complexity of very deep CNNs
Lecture 43 - Domain Adaptation and Transfer Learning in Deep Neural Networks
Lecture 44 - Transfer Learning a GoogLeNet
Lecture 45 - Transfer Learning a ResNet
Lecture 46 - Activation pooling for object localization
Lecture 47 - Region Proposal Networks (rCNN and Faster rCNN)
Lecture 48 - GAP + rCNN
Lecture 49 - Semantic Segmentation with CNN
Lecture 50 - UNet and SegNet for Semantic Segmentation
Lecture 51 - Autoencoders and Latent Spaces
Lecture 52 - Principle of Generative Modeling
Lecture 53 - Adversarial Autoencoders
Lecture 54 - Adversarial Autoencoder for Synthetic Sample Generation
Lecture 55 - Adversarial Autoencoder for Classification
Lecture 56 - Understanding Video Analysis
Lecture 57 - Recurrent Neural Networks and Long Short-Term Memory
Lecture 58 - Spatio-Temporal Deep Learning for Video Analysis
Lecture 59 - Activity recognition using 3D-CNN
Lecture 60 - Activity recognition using CNN-LSTM
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC: Power System Engineering

Subject Co-ordinator - Prof. Debapriya Das

Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1
Lecture 2
Lecture 3
Lecture 4
Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11 - Cables (Continued...)
Lecture 12 - Transient over voltages and Insulation coordination
Lecture 13 - Transient over voltages and Insulation coordination (Continued...)
Lecture 14 - Transient over voltages and Insulation coordination (Continued...)
Lecture 15 - Transient over voltages and Insulation coordination (Continued...)
Lecture 16 - Transient over voltages and Insulation coordination (Continued...)
Lecture 17 - Transient over voltages and Insulation coordination (Continued...)
Lecture 18 - Transient over voltages and Insulation coordination (Continued...)
Lecture 19 - Transient over voltages and Insulation coordination (Continued...)
Lecture 20 - Corona
Lecture 21 - Corona (Continued...)
Lecture 22 - Corona (Continued...)
Lecture 23 - Corona (Continued...), Sag and Tension Analysis
Lecture 24 - Sag and Tension Analysis (Continued...)
Lecture 25 - Sag and Tension Analysis (Continued...)
Lecture 26 - Sag and Tension Analysis (Continued...)
Lecture 27 - Sag and Tension Analysis (Continued...)
Lecture 28 - Sag and Tension Analysis (Continued...)
Lecture 29 - Load flow of radial distribution networks

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Load flow of radial distribution networks (Continued...)
Lecture 31 - Load flow of radial distribution networks (Continued...)
Lecture 32 - Load flow of radial distribution networks (Continued...)
Lecture 33 - Load flow of radial distribution networks (Continued...)
Lecture 34 - Load flow of radial distribution networks (Continued...)
Lecture 35 - Load flow of radial distribution networks (Continued...)
Lecture 36 - Load flow of radial distribution networks (Continued...), Voltage stability of distribution network
Lecture 37 - Load flow of radial distribution networks (Continued...), Voltage stability of distribution network
Lecture 38 - Voltage stability of distribution network, Approximate method
Lecture 39 - Application of capacitors in distribution system
Lecture 40 - Application of capacitors in distribution system (Continued...)
Lecture 41 - Application of capacitors in distribution system (Continued...)
Lecture 42 - Application of capacitors in distribution system (Continued...)
Lecture 43 - Application of capacitors in distribution system (Continued...)
Lecture 44 - Application of capacitors in distribution system (Continued...), Load frequency control
Lecture 45 - Load frequency control (Continued...)
Lecture 46 - Load frequency control (Continued...)
Lecture 47 - Load frequency control (Continued...)
Lecture 48 - Load frequency control (Continued...)
Lecture 49 - Load frequency control (Continued...)
Lecture 50 - Load frequency control (Continued...)
Lecture 51 - Load frequency control (Continued...)
Lecture 52 - Load frequency control (Continued...)
Lecture 53 - Load frequency control (Continued...)
Lecture 54 - Load frequency control (Continued...)
Lecture 55 - Load frequency control (Continued...)
Lecture 56 - Load frequency control (Continued...)
Lecture 57 - Automatic generation control
Lecture 58 - Automatic generation control (Continued...)
Lecture 59 - Automatic generation control (Continued...), Unit commitment
Lecture 60 - Unit commitment (Continued...)
Lecture 61 - Live Session

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
NPTEL Video Course - Electrical Engineering - NOC: Fundamentals of Electrical Engineering

Subject Co-ordinator - Prof. Debapriya Das

Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Basic Concepts, Examples
Lecture 2 - Basic Concepts, Examples (Continued...)
Lecture 3 - Basic Concepts, Examples (Continued...)
Lecture 4 - Basic Concepts, Examples (Continued...)
Lecture 5 - Basic Laws
Lecture 6 - Basic Laws (Continued...)
Lecture 7 - Basic Laws (Continued...)
Lecture 8 - Basic Laws (Continued...)
Lecture 9 - Basic Laws (Continued...)
Lecture 10 - Basic Laws (Continued...)
Lecture 11 - Methods of Circuit Analysis
Lecture 12 - Methods of Circuit Analysis (Continued...)
Lecture 13 - Methods of Circuit Analysis (Continued...)
Lecture 14 - Methods of Circuit Analysis (Continued...)
Lecture 15 - Methods of Circuit Analysis (Continued...)
Lecture 16 - Methods of Circuit Analysis (Continued...)
Lecture 17 - Mesh analysis with current sources, Examples
Lecture 18 - Methods of Circuit Analysis (Continued...) and Circuit Theorems
Lecture 19 - Circuit Theorems (Continued...)
Lecture 20 - Circuit Theorems (Continued...)
Lecture 21 - Circuit Theorems (Continued...)
Lecture 22 - Circuit Theorems (Continued...)
Lecture 23 - Circuit Theorems (Continued...)
Lecture 24 - Circuit Theorems (Continued...)
Lecture 25 - Circuit Theorems (Continued...) and Capacitors and Inductors
Lecture 26 - Capacitors and Inductors (Continued...)
Lecture 27 - Capacitors and Inductors (Continued...)
Lecture 28 - Capacitors and Inductors (Continued...)
Lecture 29 - First Order Circuits
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC:Digital Circuits

Subject Co-ordinator - Prof. Santanu Chattopadhyay

Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction
Lecture 2 - Introduction (Continued...)
Lecture 3 - Number System
Lecture 4 - Number System (Continued...)
Lecture 5 - Number System (Continued...)
Lecture 6 - Number System (Continued...)
Lecture 7 - Number System (Continued...)
Lecture 8 - Boolean Algebra
Lecture 9 - Boolean Algebra (Continued...)
Lecture 10 - Boolean Algebra (Continued...)
Lecture 11 - Boolean Algebra (Continued...)
Lecture 12 - Boolean Algebra (Continued...)
Lecture 13 - Boolean Algebra (Continued...)
Lecture 14 - Logic Gates
Lecture 15 - Logic Gates (Continued...)
Lecture 16 - Logic Gates (Continued...)
Lecture 17 - Logic Gates (Continued...)
Lecture 18 - Logic Gates (Continued...)
Lecture 19 - Logic Gates (Continued...)
Lecture 20 - Arithmetic Circuits
Lecture 21 - Arithmetic Circuits (Continued...)
Lecture 22 - Arithmetic Circuits (Continued...)
Lecture 23 - Decoders, Multiplexers, PLA
Lecture 24 - Decoders, Multiplexers, PLA (Continued...)
Lecture 25 - Decoders, Multiplexers, PLA (Continued...)
Lecture 26 - Decoders, Multiplexers, PLA (Continued...)
Lecture 27 - Decoders, Multiplexers, PLA (Continued...)
Lecture 28 - Sequential Circuits
Lecture 29 - Sequential Circuits (Continued...)

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
<table>
<thead>
<tr>
<th>Lecture 30</th>
<th>Sequential Circuits (Continued...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 31</td>
<td>Sequential Circuits (Continued...)</td>
</tr>
<tr>
<td>Lecture 32</td>
<td>Sequential Circuits (Continued...)</td>
</tr>
<tr>
<td>Lecture 33</td>
<td>Sequential Circuits (Continued...)</td>
</tr>
<tr>
<td>Lecture 34</td>
<td>Sequential Circuits (Continued...)</td>
</tr>
<tr>
<td>Lecture 35</td>
<td>Finite State Machine</td>
</tr>
<tr>
<td>Lecture 36</td>
<td>Finite State Machine (Continued...)</td>
</tr>
<tr>
<td>Lecture 37</td>
<td>Data Converters</td>
</tr>
<tr>
<td>Lecture 38</td>
<td>Data Converters (Continued...)</td>
</tr>
<tr>
<td>Lecture 39</td>
<td>Data Converters (Continued...)</td>
</tr>
<tr>
<td>Lecture 40</td>
<td>Data Converters (Continued...)</td>
</tr>
<tr>
<td>Lecture 41</td>
<td>Memory</td>
</tr>
<tr>
<td>Lecture 42</td>
<td>Memory (Continued...)</td>
</tr>
<tr>
<td>Lecture 43</td>
<td>Memory (Continued...)</td>
</tr>
<tr>
<td>Lecture 44</td>
<td>FPGA</td>
</tr>
<tr>
<td>Lecture 45</td>
<td>FPGA (Continued...)</td>
</tr>
<tr>
<td>Lecture 46</td>
<td>VHDL</td>
</tr>
<tr>
<td>Lecture 47</td>
<td>VHDL (Continued...)</td>
</tr>
<tr>
<td>Lecture 48</td>
<td>8085 Microprocessor</td>
</tr>
<tr>
<td>Lecture 49</td>
<td>8085 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 50</td>
<td>8085 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 51</td>
<td>8085 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 52</td>
<td>8085 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 53</td>
<td>8085 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 54</td>
<td>8085 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 55</td>
<td>8085 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 56</td>
<td>8085 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 57</td>
<td>8085 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 58</td>
<td>8085 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 59</td>
<td>8085 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 60</td>
<td>8085 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 61</td>
<td>8085 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 62</td>
<td>8085 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 63</td>
<td>8086 Microprocessor</td>
</tr>
<tr>
<td>Lecture 64</td>
<td>8086 Microprocessor (Continued...)</td>
</tr>
<tr>
<td>Lecture 65</td>
<td>8086 Microprocessor (Continued...)</td>
</tr>
</tbody>
</table>

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Course - Electrical Engineering - NOC: Analysis and Design Principles of Microwave Antennas

Subject Co-ordinator - Dr. Amitabha Bhattacharya
Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Concept of Scalar and Vector Potentials
Lecture 2 - Radiation From a Current Element (Hertzian Dipole)
Lecture 3 - Specific Properties of the Radiated Fields from a Current Element
Lecture 4 - General Properties of Radiated Fields from an Antenna
Lecture 5 - Farfield and Radiation Pattern of an Antenna
Lecture 6 - Directivity and Gain of an Antenna
Lecture 7 - Idea of Efficiency, Beamwidth, Polarisation and Bandwidth
Lecture 8 - Polarization of Antenna
Lecture 9 - Impedance of Antenna
Lecture 10 - Effective Aperture of an Antenna
Lecture 11 - Friss Transmission Equation and Antenna Temperature
Lecture 12 - Dipole And Monopole Antena
Lecture 13 - Dipole And Monopole Antena (Continued...)
Lecture 14 - BALUN
Lecture 15 - Loop Antenna
Lecture 16 - Folded Dipole Antenna
Lecture 17 - Introduction to Antenna Array
Lecture 18 - Antenna Array Theory
Lecture 19 - Broadside Uniform Linear Array
Lecture 20 - Endfire Linear Uniform Array
Lecture 21 - Parasitic Array and Log Periodic Antenna
Lecture 22 - Analysis Procedures of Aperture Antennas
Lecture 23 - Analysis Procedures of Aperture Antenna (Continued...)
Lecture 24 - Horn Antenna
Lecture 25 - Horn Antenna (Continued...)
Lecture 26 - Reflector Antennas
Lecture 27 - Paraboloid Reflector Antenna (Continued...)
Lecture 28 - Paraboloid Reflector Antenna (Continued...)
Lecture 29 - Dual Reflector Antenna

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Generalised Analysis of Antenna
Lecture 31 - Solution of Wave Equation for Electric and Magnetic Current Densities
Lecture 32 - Farfield Evaluation of Spherical Wave Radiation by Generalised Antenna
Lecture 33 - Slot Antenna
Lecture 34 - Open Ended Waveguide Antenna and Microstrip Antenna
Lecture 35 - Numerical Evaluation of Wire Antenna Currents
Lecture 36 - Solution of Integral Equation by Moment Method
Lecture 37 - Array Pattern Synthesis
Lecture 38 - Array Pattern Synthesis (Continued...)
Lecture 39 - Ultra Wideband Antennas
Lecture 40 - Antenna Measurements

Subject Co-ordinator - Prof. Indranil Hatai
Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to VLSI Design Flow
Lecture 2 - Introduction to VLSI Design Flow
Lecture 3 - Introduction to VLSI Design Flow
Lecture 4 - Algorithm to Efficient Architecture Mapping
Lecture 5 - Algorithm to Efficient Architecture Mapping (Continued...)
Lecture 6 - Algorithm to Efficient Architecture Mapping (Continued...)
Lecture 7 - Tutorial on Algorithm to Efficient Architecture Mapping
Lecture 8 - Algorithm to Efficient Architecture Mapping (Continued...)
Lecture 9 - Algorithm to Efficient Architecture Mapping (Continued...)
Lecture 10 - Algorithm to Efficient Architecture Mapping (Continued...)
Lecture 11 - Algorithm to Efficient Architecture Mapping (Continued...)
Lecture 12 - Algorithm to Efficient Architecture Mapping (Continued...)
Lecture 13 - Algorithm to Efficient Architecture Mapping
Lecture 14 - Algorithm to Efficient Architecture Mapping (Continued...)
Lecture 15 - Efficient Adder Architecture
Lecture 16 - Efficient Adder Architecture (Continued...)
Lecture 17 - Efficient Adder Architecture (Continued...)
Lecture 18 - Efficient Adder Architecture
Lecture 19 - Efficient Adder Architecture
Lecture 20 - Efficient Adder Architecture
Lecture 21 - Efficient Adder Architecture
Lecture 22 - Efficient Adder Architecture
Lecture 23 - Efficient Adder Architecture
Lecture 24 - Efficient Adder Architecture
Lecture 25 - Pipelining and Parallel Processing
Lecture 26 - Pipelining and Parallel Processing
Lecture 27 - Multiplier Architecture
Lecture 28 - Multiplier Architecture
Lecture 29 - Multiplier Architecture

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimath.in
Lecture 30 - Multiplier Architecture
Lecture 31 - Multiplier Architecture
Lecture 32 - Multiplier Architecture
Lecture 33 - Multiplier Architecture
Lecture 34 - Multiplier Architecture
Lecture 35 - Squaring Circuit Design
Lecture 36 - Reconfigurable Constant Multiplier Design
Lecture 37 - Reconfigurable Constant Multiplier Design
Lecture 38 - Reconfigurable Constant Multiplier Design
Lecture 39 - Fixed Point Number Representation
Lecture 40 - Fixed Point Number Representation
Lecture 41 - CORDIC Architecture
Lecture 42 - CORDIC Architecture
Lecture 43 - CORDIC Architecture
Lecture 44 - CORDIC Architecture
Lecture 45 - Timing Analysis
Lecture 46 - Timing Analysis
Lecture 47 - Timing Analysis
Lecture 48 - Logic Hazard
Lecture 1	Inductance, Self and Mutual
Lecture 2	Relationship of Inductances in Transformer
Lecture 3	Equivalent Circuit from Circuit KVL Equations
Lecture 4	Co-efficient of Coupling, Energy Stored in Coupled Coils
Lecture 5	A Single Conductor Generator and Motor
Lecture 6	Analysis of Single Conductor Generator and Motor
Lecture 7	Analysis of Single Conductor Generator and Motor (Continued...)
Lecture 8	Flux Density Distribution in Space and Nature emf
Lecture 9	Flux Density Distribution in Space and Nature emf (Continued...)
Lecture 10	From Linear to Rotating Machine
Lecture 11	From Linear to Rotating Machine (Continued...)
Lecture 12	Basic Underlying Principle of Operation of Rotating Machine
Lecture 13	Basic Underlying Principle of Operation of Rotating Machine (Continued...)
Lecture 14	Flux Density Distribution along the Air Gap
Lecture 15	Flux Density Distribution along the Air Gap (Continued...)
Lecture 16	Induced Voltage in a Coil in a Rotating Machine
Lecture 17	Induced Voltage in a Coil in a Rotating Machine (Continued...)
Lecture 18	Induced Voltage in a Coil in a Rotating Machine (Continued...)
Lecture 19	Induced Voltage due to Fundamental and Harmonic Components of Flux Density Distribution
Lecture 20	Distributed Coils Connected in Series Resultant Voltage
Lecture 21	Distribution Factor
Lecture 22	Pitch Factor and Winding Factor
Lecture 23	How to decide about Short Pitch Angle Å•Åp
Lecture 24	Double Layer 3-phase Winding - An Introduction
Lecture 25	Winding Table for 3-phase Distributed Winding
Lecture 26	Winding Table for 3-phase Distributed Winding with Examples
Lecture 27	Winding Table for 3-phase Distributed Winding with Examples (Continued...)
Lecture 28	120 degree Phase Spread Winding with Examples
Lecture 29	Winding Table of 120 degree Phase Spread Coils and Group Connection
Lecture 69 - Introduction to Starting of 1ph. Induction Motor
Lecture 70 - Expression for Starting Torque and Need for Phase Splitting
Lecture 71 - Resistor Split 1 ph. Induction Motor
Lecture 72 - Capacitor Split 1 ph Induction Motor
Lecture 73 - Starting of 1 ph. Induction Motor (Continued...)
Lecture 74 - Synchronous Machine Construction
Lecture 75 - Synchronous Generator - Introduction
Lecture 76 - Synchronisation
Lecture 77 - Expression for Induced Voltage and O.C. Phasor Diagram
Lecture 78 - Loaded Synchronous Generator - Resultant Field
Lecture 79 - Armature Reaction and Synchronous Reactance. Basic Phasor Diagram
Lecture 80 - General Mode of Operation - Rotro Field, Stator Field and Resultant Field
Lecture 81 - Complete Phasor Diagram and Expression for Complex Power
Lecture 82 - Synchronous Motor Operation, Phasor Diagram and Power Expression
Lecture 83 - Effect of Variation of Field Current in Generator
Lecture 84 - Effect of Variation Field Current in Synchronous Motor, Introduction to Salient Pole Machine
Lecture 85 - Analysis of Salient Pole Synchronous Machine
Lecture 86 - Phasor Diagram of Salient Pole Synchronous Machine for Generator and Motor Mode
Lecture 87 - Expression for Load Angle and Expression for Power
Lecture 88 - Phasor Diagrams of Salient Pole Synchronous Generator under Various Conditions
Lecture 89 - Phasor Diagrams of Salient Pole Synchronous Motor under Various Conditions
Lecture 90 - O.C and S.C Test on Synchronous Generator
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC:Digital Electronic Circuits

Subject Co-ordinator - Prof. Goutam Saha
Co-ordinating Institute - IIT - Kharagpur
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

| Lecture 1 - Introduction |
| Lecture 2 - Transistor as a switch |
| Lecture 3 - Performance Issues and Introduction to TTL |
| Lecture 4 - Transistor Transistor Logic (TTL) |
| Lecture 5 - CMOS Logic |
| Lecture 6 - Basic Gates and their representations |
| Lecture 7 - Fundamentals of Boolean Algebra |
| Lecture 8 - Boolean Function to Truth Table and Implementation Issues |
| Lecture 9 - Truth Table to Boolean Function and Implementation Issues |
| Lecture 10 - Karnaugh Map and Digital Circuit Realization |
| Lecture 11 - Karnaugh Map to Entered Variable Map |
| Lecture 12 - Quine - McClusky (QM) Algorithm |
| Lecture 13 - Cost Criteria and Minimization of Multiple Output Functions |
| Lecture 14 - Static 1 Hazard |
| Lecture 15 - Static 0 Hazard and Dynamic Hazard |
| Lecture 16 - Multiplexer |
| Lecture 17 - Multiplexer |
| Lecture 18 - Demultiplexer / Decoder |
| Lecture 19 - Decoder with BCD Input and Encoder |
| Lecture 20 - Parity Generator and Checker |
| Lecture 21 - Number System |
| Lecture 22 - Negative Number and 2s Complement Arithmetic |
| Lecture 23 - Arithmetic Building Blocks - I |
| Lecture 24 - Arithmetic Building Blocks - II |
| Lecture 25 - Overflow Detection and BCD Arithmetic |
| Lecture 26 - Magnitude Comparator |
| Lecture 27 - Arithmetic Logic Unit (ALU) |
| Lecture 28 - Unweighted Code |
| Lecture 29 - Error Detection and Correction Code |

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Multiplication and Division
Lecture 31 - SR Latch and Introduction to Clocked Flip-Flop
Lecture 32 - Edge-Triggered Flip-Flop
Lecture 33 - Representations of Flip-Flops
Lecture 34 - Analysis of Sequential Logic Circuit
Lecture 35 - Conversion of Flip-Flops and Flip-Flop Timing Parameters
Lecture 36 - Register and Shift Register
Lecture 37 - Shift Register
Lecture 38 - Application of Shift Register
Lecture 39 - Linear Feedback Shift Register
Lecture 40 - Serial Addition, Multiplication and Division
Lecture 41 - Asynchronous Counter
Lecture 42 - Decoding Logic and Synchronous Counter
Lecture 43 - Cascading
Lecture 44 - Counter Design with Asynchronous Reset and Preset
Lecture 45 - Counter Design as Synthesis Problem and Few Other Uses of Counter
Lecture 46 - Synthesis of Sequential Logic Circuit
Lecture 47 - Moore Model and Mealy Model
Lecture 48 - Algorithmic State Machine (ASM) Chart and Synthesis of Sequential Logic Circuit
Lecture 49 - Circuit Realization from ASM Chart and State Minimization
Lecture 50 - State Minimization by Implication Table and Partitioning Method
Lecture 51 - Digital to Analog Conversion - I
Lecture 52 - Digital to Analog Conversion - II
Lecture 53 - Analog to Digital Conversion - I
Lecture 54 - Analog to Digital Conversion - II
Lecture 55 - Certain Performance Issue of ADC and DAC
Lecture 56 - Introduction to Memory
Lecture 57 - Static Random Access Memory (SRAM)
Lecture 58 - Dynamic RAM (DRAM) and Memory Expansion
Lecture 59 - Read Only Memory (ROM)
Lecture 60 - PAL, PLA, CPLD, FPGA
NPTEL Video Course - Electrical Engineering - NOC: Power System Dynamics, Control and Monitoring

Subject Co-ordinator - Prof. Debapriya Das
Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Power System stability
Lecture 2 - Power System stability (Continued...)
Lecture 3 - Power System stability (Continued...)
Lecture 4 - Power System stability (Continued...)
Lecture 5 - Power System stability (Continued...)
Lecture 6 - Power System Stability (Continued...)
Lecture 7 - Power System Stability (Continued...)
Lecture 8 - Power System Stability (Continued...)
Lecture 9 - Power System Stability (Continued...)
Lecture 10 - Power System Stability (Continued...)
Lecture 11 - Power System Stability (Continued...)
Lecture 12 - Power System Stability (Continued...)
Lecture 13 - Power System Stability (Continued...)
Lecture 14 - Power System Stability (Continued...)
Lecture 15 - Power System Stability (Continued...)
Lecture 16 - Power System Stability (Continued...)
Lecture 17 - Power System Stability (Continued...)
Lecture 18 - Power System Stability (Continued...)
Lecture 19 - Power System Stability (Continued...)
Lecture 20 - Power System Stability (Continued...)
Lecture 21 - Power System stability (Continued...)
Lecture 22 - Power System stability, Eigen properties of the state matrix
Lecture 23 - Power System stability, Eigen properties of the state matrix (Continued...)
Lecture 24 - Power System stability, Eigen properties of the state matrix (Continued...)
Lecture 25 - Power System stability, Eigen properties of the state matrix (Continued...)
Lecture 26 - Power System stability, Eigen properties of the state matrix (Continued...)
Lecture 27 - Power System stability, Eigen properties of the state matrix, Transient stability
Lecture 28 - Transient stability
Lecture 29 - Transient stability (Continued...)

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Transient stability (Continued...)
Lecture 31 - Transient stability
Lecture 32 - Transient stability, Automatic generation control conventional scenario
Lecture 33 - Automatic generation control conventional scenario
Lecture 34 - Automatic generation control conventional scenario
Lecture 35 - Automatic generation control conventional scenario
Lecture 36 - Automatic generation control conventional scenario
Lecture 37 - Automatic generation control conventional scenario
Lecture 38 - Automatic generation control conventional scenario
Lecture 39 - Automatic generation control conventional scenario
Lecture 40 - Automatic generation control conventional scenario
Lecture 41 - AGC in deregulated system
Lecture 42 - AGC in deregulated system (Continued...)
Lecture 43 - AGC in deregulated system (Continued...)
Lecture 44 - AGC in deregulated system (Continued...)
Lecture 45 - AGC in deregulated system (Continued...)
Lecture 46 - AGC in deregulated system (Continued...)
Lecture 47 - AGC in deregulated system (Continued...)
Lecture 48 - AGC in deregulated system (Continued...)
Lecture 49 - AGC in deregulated system, Reactive power and voltage control
Lecture 50 - Reactive power and voltage control
Lecture 51 - Reactive power and voltage control, State estimation in power system
Lecture 52 - State estimation in power system
Lecture 53 - State estimation in power system (Continued...)
Lecture 54 - State estimation in power system (Continued...)
Lecture 55 - State estimation in power system (Continued...)
Lecture 56 - State estimation in power system (Continued...)
Lecture 57 - Hydraulic turbine modelling
Lecture 58 - Hydraulic turbine modelling (Continued...)
Lecture 59 - Subsynchronous oscillation
Lecture 60 - Subsynchronous oscillation, Windup and non windup limits
Lecture 30 - Waveforms beyond 5G (Continued...)
Lecture 31 - Waveform beyond 5G (Precoded GFDM)
Lecture 32 - Comparison of waveforms
Lecture 33 - Channel models for performance evaluation - Part I
Lecture 34 - Channel models for performance evaluation - Part II
Lecture 35 - Channel models for performance evaluation - Part III
Lecture 36 - MIMO Signal Processing (Receive Diversity)
Lecture 37 - MIMO Signal Processing
Lecture 38 - MIMO Signal Processing (Capacity)
Lecture 39 - MIMO Signal Processing (Capacity and Massive MIMO)
Lecture 40 - Hybrid beamforming (mmWave)
NPTEL Video Course - Electrical Engineering - Modelling and Analysis of Electric Machines

Subject Co-ordinator - Dr. Krishna Vasudevan

Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction
Lecture 2 - Magnetic Fields
Lecture 3 - Magnetic Circuit
Lecture 4 - Singly Excited Linear Motion System
Lecture 5 - Linear and Cylindrical Motion Systems
Lecture 6 - Systems with Multiple Excitations
Lecture 7 - Non-linear Magnetic Systems
Lecture 8 - Inductances in Constant Air gap Machines
Lecture 9 - Inductance in Salient Pole Machine - I
Lecture 10 - Inductance in Salient Pole Machine - II
Lecture 11 - Inductance in Salient Pole Machine - III
Lecture 12 - Inductance in Salient Pole Machine - IV
Lecture 13 - Inductance in Salient Pole Machine - V
Lecture 14 - Inductances of Distributed Winding - I
Lecture 15 - Inductances of Distributed Winding - II
Lecture 16 - Inductances of Distributed Winding - III
Lecture 17 - Dynamic Equations of Induction Machines
Lecture 18 - Dynamic Equations of Salient Pole Synchronous Machine
Lecture 19 - Three-to-Two Phase Transformation
Lecture 20 - Induction Machine in Two-Phase Reference Frame
Lecture 21 - The Pseudo-Stationary Reference Frame
Lecture 22 - Induction Machine in Pseudo-Stationary Reference Frame
Lecture 23 - The Primitive Machine Equations
Lecture 24 - Dynamic Equations of DC Machines
Lecture 25 - Small Signal Model of DC Machine
Lecture 26 - Small Signal Behaviour of DC Machine
Lecture 27 - The Arbitrary Reference Frame
Lecture 29 - Introduction to Field Oriented Control of Induction Machines

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Space Vector Formulation of Induction Machine Equations
Lecture 31 - Modelling of Salient Pole Synchronous Machines - I
Lecture 32 - Modelling of Salient Pole Synchronous Machines - II
Lecture 33 - Modelling of Salient Pole Synchronous Machines - III
Lecture 34 - Steady State Models - Induction Machine
Lecture 35 - Steady State Models - Salient Pole Synchronous Machine
Lecture 36 - Solution of Dynamic Equations of Induction Machine - I
Lecture 37 - Solution of Dynamic Equations of Induction Machine - II
Lecture 38 - Reactances of Salient Pole Synchronous Machines - I
Lecture 39 - Reactances of Salient Pole Synchronous Machines - II
Lecture 40 - Reactances of Salient Pole Synchronous Machines - III
Lecture 41 - Sudden Short Circuit of Three Phase Alternator - Analytical Solution
Lecture 42 - Sudden Short Circuit of Three Phase Alternator - Numerical Simulation
Lecture 43 - Course Recapitulation and Assignments
NPTEL Video Course - Electrical Engineering - Analog ICs

Subject Co-ordinator - Prof. K. Radhakrishna Rao

Co-ordinating Institute - IIT - Madras | Texas Instruments - India

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Basic Building Blocks In Analog ICs
Lecture 2 - Current Mirrors
Lecture 3 - Translinear Networks
Lecture 4 - Differential Amplifier
Lecture 5 - Differential Amplifier Characteristics
Lecture 6 - Video Amplifier and RF/IF Amplifiers
Lecture 7 - Cascade Amplifier
Lecture 8 - IC Negative Feedback Wide Band Amplifiers
Lecture 9 - IC Negative Feedback Amplifiers
Lecture 10 - Voltage Sources And References
Lecture 11 - IC Voltage Regulator
Lecture 12 - Characteristics and Parameters Of Voltage
Lecture 13 - Protection Circuitry For Voltage Regulator
Lecture 14 - Switched Mode Regulator And Operational
Lecture 15 - IC Operational Voltage Amplifier
Lecture 16 - General Purpose Operational Amplifier-747
Lecture 17 - Transconductance Operational Amplifier
Lecture 18 - Audio Power Amplifier and Norton’s Amplifier
Lecture 19 - Analog Multipliers
Lecture 20 - Analog Multipliers
Lecture 21 - Voltage Controlled Oscillator
Lecture 22 - Voltage Controlled Oscillator
Lecture 23 - Self Tuned Filter
Lecture 24 - Phase Locked Loop
Lecture 25 - Phase Locked Loop
Lecture 26 - Phase Locked Loop
Lecture 27 - Phase Locked Loop
Lecture 28 - Current Mode ICs

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Digital Integrated Circuits

Subject Co-ordinator - Prof. Amitava Dasgupta
Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Semiconductors
Lecture 2 - Modelling of PN Junction Diodes
Lecture 3 - Modelling of BJTs
Lecture 4 - Diode and BJT Model Parameter Extraction
Lecture 5 - BJT Inverters DC and Switching Characteristics
Lecture 6 - Schottky Transistor
Lecture 7 - Specifications of Logic Circuits
Lecture 8 - Qualitative discussion on TTL Circuits
Lecture 9 - Standard TTL Circuits
Lecture 10 - Schottky (74s..) and Low power Schottky (74ls)
Lecture 11 - Advanced TTL Circuits
Lecture 12 - I2 L Technology
Lecture 13 - Edge triggered D-F/F
Lecture 14 - I2 L - Condition for Proper Operation
Lecture 15 - I2 L - Propagation delay Self aligned
Lecture 16 - Schottky Transistor Logic
Lecture 17 - Stacked I2 L
Lecture 18 - ECL Basic Operation
Lecture 19 - Quantitative analysis of ECL 10k Series gates
Lecture 20 - ECL 100k series; Stacked ECL gates; D-F/F
Lecture 21 - Emitter Function Logic;Low Power ECL
Lecture 22 - Polymitter Bipolar Transistor In ECL;Propagation
Lecture 23 - Heterojunction Bipolar Transistor Based ECL;ECL
Lecture 24 - nMOS Logic Circuits
Lecture 25 - nMOS Logic Circuits(contd); CMOS
Lecture 26 - CMOS Inverter
Lecture 27 - CMOS NAND,NOR and Other Gates
Lecture 28 - Dynamic CMOS ;Transmission Gates;Realization Of MUX,decoder, D-F/F
Lecture 29 - BiCMOS Gates

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - BiCMOS Driver; BiCMOS 32-bit Adder
Lecture 31 - Digital Integrated Circuits
Lecture 32 - Digital Integrated Circuits
Lecture 33 - CMOS SRAM
Lecture 34 - BiCMOS SRAM
Lecture 35 - DRAM-CMOS and BiCMOS
Lecture 36 - ROM-EPROM, EEPROM and Flash EPROM
Lecture 37 - GaAs MESFET Characteristics and Equivalent Circuits
Lecture 38 - Direct Coupled FET Logic; Superbuffer FET Logic
Lecture 39 - Buffered FET Logic; Schottky Diode FET Logic
Lecture 40 - Transmission Line Effects
NPTEL Video Course - Electrical Engineering - Electromagnetic Fields

Subject Co-ordinator - Prof. Harishankar Ramachandran
Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction To Vector
Lecture 2 - Introduction To Vector (Continued...)
Lecture 3 - Coulomb's Law
Lecture 4 - Electric Field
Lecture 5 - Electro Static Potential
Lecture 6 - The Gradient
Lecture 7 - Gauss's Law
Lecture 8 - Poisson's Equation
Lecture 9 - Energy In The Field
Lecture 10 - Sample Problems In Electrostatics
Lecture 11 - Fields In Materials
Lecture 12 - Fields In Material Bodies
Lecture 13 - Displacement Vectors
Lecture 14 - Capacitors
Lecture 15 - Method Of Images
Lecture 16 - Poisson's Equation 2 Dimensions
Lecture 17 - Field Near Sharp Edges And Points
Lecture 18 - Magnetic Field 1
Lecture 19 - Magnetic Field 2
Lecture 20 - Stokes Theorems
Lecture 21 - The curl
Lecture 22 - Field due to current loop
Lecture 23 - Ampere's law
Lecture 24 - Examples of Ampere's law
Lecture 25 - Inductance
Lecture 26 - Mutual Inductance
Lecture 27 - Faraday's law
Lecture 28 - Magnetic Energy
Lecture 29 - Magnetic Energy (Continued...)

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Networks and Systems

Subject Co-ordinator - Prof. V.G.K. Murti
Co-ordinating Institute - IIT - Madras
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introductory Concepts - 1
Lecture 2 - Introductory Concepts - 2
Lecture 3 - Introductory Concepts - 3
Lecture 4 - Introductory Concepts - 4
Lecture 5 - Introductory Concepts - 5
Lecture 6 - Introductory Concepts - 6
Lecture 7 - Fourier Series - 1
Lecture 8 - Fourier Series - 2
Lecture 9 - Fourier Series - 3
Lecture 10 - Fourier Series - 4
Lecture 11 - Fourier Series - 5
Lecture 12 - Fourier Series - 6
Lecture 13 - Fourier Transforms - 1
Lecture 14 - Fourier Transforms - 2
Lecture 15 - Fourier Transforms - 3
Lecture 16 - Fourier Transforms - 4
Lecture 17 - Fourier Transforms - 5
Lecture 18 - Fourier Transforms - 6
Lecture 19 - Fourier Transforms - 7
Lecture 20 - Laplace Transforms - 1
Lecture 21 - Laplace Transforms - 2
Lecture 22 - Laplace Transforms - 3
Lecture 23 - Laplace Transforms - 4
Lecture 24 - Laplace Transforms - 5
Lecture 25 - Laplace Transforms - 6
Lecture 26 - Application of Laplace Transforms - 1
Lecture 27 - Application of Laplace Transforms - 2
Lecture 28 - Application of Laplace Transforms - 3
Lecture 29 - Application of Laplace Transforms - 4
NPTEL Video Course - Electrical Engineering - Probability Foundation for Electrical Engineers

Subject Co-ordinator - Dr. Krishna Jagannathan

Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction
Lecture 2 - Cardinality and Countability - 1
Lecture 3 - Cardinality and Countability - 2
Lecture 4 - Probability Spaces - 1
Lecture 5 - Probability Spaces - 2
Lecture 6 - Properties of Probability Measures
Lecture 7 - Discrete Probability Spaces
Lecture 8 - Generated ?-Algebra, Borel Sets
Lecture 9 - Borel Sets and Lebesgue Measure - 1
Lecture 10 - Borel Sets and Lebesgue Measure - 2
Lecture 11 - The Infinite Coin Toss Model
Lecture 12 - Conditional Probability and Independence
Lecture 13 - Independence (Continued...)
Lecture 14 - The Borel-Cantelli Lemmas
Lecture 15 - Random Variables
Lecture 16 - Cumulative Distribution Function
Lecture 17 - Types of Random Variables
Lecture 18 - Continuous Random Variables
Lecture 19 - Continuous Random Variables (Continued...) And Singular Random Variables
Lecture 20 - Several Random Variables
Lecture 21 - Independent Random Variables - 1
Lecture 22 - Independent Random Variables - 2
Lecture 23 - Jointly Continuous Random Variables
Lecture 24 - Transformation of Random Variables - 1
Lecture 25 - Transformation of Random Variables - 2
Lecture 26 - Transformation of Random Variables - 3
Lecture 27 - Transformation of Random Variables - 4
Lecture 28 - Integration And Expectation - 1
Lecture 29 - Integration And Expectation - 2

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30	Properties of Integrals
Lecture 31	Monotone Convergence Theorem
Lecture 32	Expectation of Discrete Random Variables, Expectation Over Different Spaces
Lecture 33	Expectation of Discrete Random Variables
Lecture 34	Fatou's Lemma and Dominated Convergence Theorem
Lecture 35	Variance and Covariance
Lecture 36	Covariance, Correlation Coefficient
Lecture 37	Conditional Expectation
Lecture 38	MMSE Estimator, Transforms
Lecture 39	Moment Generating Function
Lecture 40	Characteristic Function - 1
Lecture 41	Characteristic Function - 2
Lecture 42	Concentration Inequalities
Lecture 43	Convergence of Random Variables - 1
Lecture 44	Convergence of Random Variables - 2
Lecture 45	Convergence of Random Variables - 3
Lecture 46	Convergence of Characteristic Functions, Limit Theorems
Lecture 47	The Laws of Large Numbers
Lecture 48	The Central Limit Theorem
Lecture 49	A Brief Overview of Multivariate Gaussians
NPTEL Video Course - Electrical Engineering - NOC: Analog Circuits

Subject Co-ordinator - Dr. Nagendra Krishnapura
Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to the course
Lecture 2 - Obtaining power gain
Lecture 3 - Obtaining power gain using a linear two port?
Lecture 4 - One port (two terminal) nonlinear element
Lecture 5 - Nonlinear circuit analysis
Lecture 6 - Small signal incremental analysis-graphical view
Lecture 7 - Small signal incremental analysis
Lecture 8 - Incremental equivalent circuit
Lecture 9 - Large signal characteristics of a diode
Lecture 10 - Analysis of diode circuits
Lecture 11 - Small signal model of a diode
Lecture 12 - Two port nonlinearity
Lecture 13 - Small signal equivalent of a two port network
Lecture 14 - Small signal equivalent circuit of a two port network
Lecture 15 - Gain of a two port network
Lecture 16 - Constraints on small signal parameters to maximize the gain
Lecture 17 - Constraints on large signal characteristics to maximize the gain
Lecture 18 - Implications of constraints in terms of the circuit equivalent
Lecture 19 - MOS transistor-description
Lecture 20 - MOS transistor large signal characteristics
Lecture 21 - MOS transistor large signal characteristics-graphical view
Lecture 22 - MOS transistor small signal characteristics
Lecture 23 - Linear (Triode) region of the MOS transistor
Lecture 24 - Small signal amplifier using the MOS transistor
Lecture 25 - Basic amplifier structure
Lecture 26 - Problems with the basic structure
Lecture 27 - Adding bias and signal-ac coupling
Lecture 28 - Common source amplifier with biasing
Lecture 29 - Common source amplifier
Lecture 30 - Common source amplifier analysis
Lecture 31 - Constraint on the input coupling capacitor
Lecture 32 - Constraint on the output coupling capacitor
Lecture 33 - Dependence of Id on Vds
Lecture 34 - Small signal output conductance of a MOS TRANSISTOR
Lecture 35 - Effect of gds on a common source amplifier, Inherent gain limit of a Transistor
Lecture 36 - Variation of gm with transistors parameters
Lecture 37 - Variation of gm with constant Vgs and constant drain current bias
Lecture 38 - Negative feedback control for constant drain current bias
Lecture 39 - Types of feedback for constant drain current bias
Lecture 40 - Sense at the drain and feedback to the gate-Drain feedback
Lecture 41 - Intuitive explanation of low sensitivity with drain feedback bias
Lecture 42 - Common source amplifier with drain feedback bias
Lecture 43 - Constraint on the gate bias resistor
Lecture 44 - Constraint on the input coupling capacitor.
Lecture 45 - Constraint on the output coupling capacitor.
Lecture 46 - Input and output resistances of the common source amplifier with constant VGS bias
Lecture 47 - Current mirror
Lecture 48 - Common source amplifier with current mirror bias
Lecture 49 - Constraint on coupling capacitors and bias resistance
Lecture 50 - Diode connected transistor
Lecture 51 - Source feedback biasing
Lecture 52 - Common source amplifier with source feedback bias
Lecture 53 - Constraints on capacitor values
Lecture 54 - Sensing at the drain and feeding back to the source
Lecture 55 - Sensing at the source and feeding back to the gate
Lecture 56 - Ensuring that transistor is in saturation
Lecture 57 - Using a resistor instead of current source for biasing
Lecture 58 - Quick tour of amplifying devices
Lecture 59 - Controlled sources using a MOS transistor-Introduction
Lecture 60 - Voltage controlled voltage source
Lecture 61 - VCVS using a MOS transistor
Lecture 62 - VCVS using a MOS transistor-Small signal picture
Lecture 63 - VCVS using a MOS transistor-Complete circuit
Lecture 64 - Source follower
Lecture 65 - VCCS using a MOS transistor
Lecture 66 - VCCS using a MOS transistor
Lecture 67 - VCCS using a MOS transistor
Lecture 68 - VCCS using a MOS transistor
NPTEL Video Lecture Topic List

Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC: Introduction to Non Linear Dynamics

Subject Co-ordinator - Prof. Gaurav Raina

Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A brief introduction to modelling</td>
</tr>
<tr>
<td>2</td>
<td>Dynamics and Nonlinear systems</td>
</tr>
<tr>
<td>3</td>
<td>1-Dimensional Flows, Flows on the Line, Lecture 1</td>
</tr>
<tr>
<td>4</td>
<td>1-Dimensional Flows, Flows on the Line, Lecture 2</td>
</tr>
<tr>
<td>5</td>
<td>1-Dimensional Flows, Flows on the Line, Lecture 3</td>
</tr>
<tr>
<td>6</td>
<td>1-Dimensional Flows, Flows on the Line, Lecture 4</td>
</tr>
<tr>
<td>7</td>
<td>1-Dimensional Flows, Flows on the Line, Lecture 5</td>
</tr>
<tr>
<td>8</td>
<td>1-Dimensional Flows, Flows on the Line, Lecture 6</td>
</tr>
<tr>
<td>9</td>
<td>1-Dimensional Flows, Bifurcations, Lecture 1</td>
</tr>
<tr>
<td>10</td>
<td>1-Dimensional Flows, Bifurcations, Lecture 2</td>
</tr>
<tr>
<td>11</td>
<td>1-Dimensional Flows, Bifurcations, Lecture 3</td>
</tr>
<tr>
<td>12</td>
<td>1-Dimensional Flows, Bifurcations, Lecture 4</td>
</tr>
<tr>
<td>13</td>
<td>1-Dimensional Flows, Bifurcations, Lecture 5</td>
</tr>
<tr>
<td>14</td>
<td>1-Dimensional Flows, Bifurcations, Lecture 6</td>
</tr>
<tr>
<td>15</td>
<td>1-Dimensional Flows, Flows on the Circle, Lecture 1</td>
</tr>
<tr>
<td>16</td>
<td>1-Dimensional Flows, Flows on the Circle, Lecture 2</td>
</tr>
<tr>
<td>17</td>
<td>2-Dimensional Flows, Linear Systems, Lecture 1</td>
</tr>
<tr>
<td>18</td>
<td>2-Dimensional Flows, Linear Systems, Lecture 2</td>
</tr>
<tr>
<td>19</td>
<td>2-Dimensional Flows, Linear Systems, Lecture 3</td>
</tr>
<tr>
<td>20</td>
<td>2-Dimensional Flows, Linear Systems, Lecture 4</td>
</tr>
<tr>
<td>21</td>
<td>2-Dimensional Flows, Phase Plane, Lecture 1</td>
</tr>
<tr>
<td>22</td>
<td>2-Dimensional Flows, Phase Plane, Lecture 2</td>
</tr>
<tr>
<td>23</td>
<td>2-Dimensional Flows, Phase Plane, Lecture 3</td>
</tr>
<tr>
<td>24</td>
<td>2-Dimensional Flows, Limit Cycles, Lecture 1</td>
</tr>
<tr>
<td>25</td>
<td>2-Dimensional Flows, Limit Cycles, Lecture 2</td>
</tr>
<tr>
<td>26</td>
<td>2-Dimensional Flows, Limit Cycles, Lecture 3</td>
</tr>
<tr>
<td>27</td>
<td>2-Dimensional Flows, Bifurcations, Lecture 1</td>
</tr>
<tr>
<td>28</td>
<td>2-Dimensional Flows, Bifurcations, Lecture 2</td>
</tr>
<tr>
<td>29</td>
<td>2-Dimensional Flows, Bifurcations, Lecture 3</td>
</tr>
</tbody>
</table>

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Course - Electrical Engineering - NOC: Control Engineering

Subject Co-ordinator - Prof. Ramkrishna.P
Co-ordinating Institute - IIT - Madras

Lecture 1 - Introduction to Systems and Control
Lecture 2 - Modelling of Systems
Lecture 3 - Elements of Modelling
Lecture 4 - Examples of Modelling
Lecture 5 - Solving Problems in Modelling of Systems
Lecture 6 - Laplace Transforms
Lecture 7 - Inverse Laplace Transforms
Lecture 8 - Transfer Function of Modelling Block Diagram Representation
Lecture 9 - Solving Problems on Laplace Transforms and Transfer Functions
Lecture 10 - Block Diagram Reduction, Signal Flow Graphs
Lecture 11 - Solving Problems on Block Diagram Reduction, Signal Flow Graphs
Lecture 12 - Time Response Analysis of Systems
Lecture 13 - Time Response Specifications
Lecture 14 - Solving Problems on Time Response Analysis and Specifications
Lecture 15 - Stability
Lecture 16 - Routh Hurwitz Criterion
Lecture 17 - Routh Hurwitz Criterion T 1
Lecture 18 - Closed Loop System and Stability
Lecture 19 - Root Locus Technique
Lecture 20 - Root Locus Plots
Lecture 21 - Root Locus Plots (Continued...)
Lecture 22 - Root Locus Plots (Continued...)
Lecture 23 - Root Locus Plots (Continued...)
Lecture 24 - Introduction to Frequency Response
Lecture 25 - Frequency Response Plots
Lecture 26 - Relative Stability
Lecture 27 - Bode plots
Lecture 28 - Basics of Control Design Proportional, Integral and Derivative Actions
Lecture 29 - Basics of Control Design Proportional, Integral and Derivative Actions

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Problems on PID Controllers
Lecture 31 - Basics of Control design Proportional, Integral and Derivative Actions
Lecture 32 - Control design in time domain and discusses the lead compensator
Lecture 33 - Improvement of the Transient Response using lead compensation
Lecture 34 - Design of control using lag compensators
Lecture 35 - The design of Lead-Lag compensators using root locus
Lecture 36 - Introduction design of control in frequency domain
Lecture 37 - Design of Lead Compensator using Bode Plots
Lecture 38 - Design of Lag Compensators using Bode Plots
Lecture 39 - Design of Lead-Lag Compensators using Bode plots
Lecture 40 - Experimental Determination of Transfer Function
Lecture 41 - Effect of Zeros on System Response
Lecture 42 - Navigation - Stories and Some Basics
Lecture 43 - Navigation - Dead Reckoning and Reference Frames
Lecture 44 - Inertial Sensors and Their Characteristics
Lecture 45 - Filter Design to Attenuate Inertial Sensor Noise
Lecture 46 - Complementary Filter
Lecture 47 - Complementary Filter - 1
Lecture 48 - Introduction to State Space Systems
Lecture 49 - Linearization of State Space Dynamics
Lecture 50 - Linearization of State Space Dynamics - 1
Lecture 51 - Controllability and Observability
NPTEL Video Course - Electronics and Communication Engineering - NOC: Analog IC Design

Subject Co-ordinator - Prof. S. Aniruddhan
Co-ordinating Institute - IIT - Madras
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to MOSFETs
Lecture 2 - Simple MOSFET Circuits
Lecture 3 - MOSFET Current Mirrors
Lecture 4 - Cascode Amplifiers
Lecture 5 - MOSFET in Integrated Circuits
Lecture 6 - MOSFET Capacitances
Lecture 7 - Noise
Lecture 8 - Noise of Simple Circuits
Lecture 9 - Systematic Mismatch
Lecture 10 - Random Mismatch
Lecture 11 - Differential Amplifiers
Lecture 12 - Negative Feedback
Lecture 13 - Stability of Negative Feedback Systems
Lecture 14 - Dominant Pole Compensation
Lecture 15 - Active Load
Lecture 16 - One Stage OpAmps - 1
Lecture 17 - One Stage OpAmps - 2
Lecture 18 - One Stage OpAmps - 3
Lecture 19 - Differential Amplifiers Offset
Lecture 20 - One Stage OpAmps - Noise and Offset
Lecture 21 - One Stage OpAmps - Slew Rate
Lecture 22 - One Stage OpAmps - Datasheet
Lecture 23 - One Stage OpAmps - Example 1
Lecture 24 - One Stage OpAmps - Example 2
Lecture 25 - Telescopic OpAmp - 1
Lecture 26 - Telescopic OpAmp - 2
Lecture 27 - Telescopic OpAmp - 3
Lecture 28 - Telescopic OpAmp - 4
Lecture 29 - Telescopic OpAmp - 5

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Telescopic OpAmp - Datasheet
Lecture 31 - Telescopic OpAmp - Design Example
Lecture 32 - Folded-Cascode OpAmp - 1
Lecture 33 - Folded-Cascode OpAmp - 2
Lecture 34 - Folded-Cascode OpAmp - 3
Lecture 35 - Folded-Cascode OpAmp - 4
Lecture 36 - Folded-Cascode OpAmp - 5
Lecture 37 - Negative feedback amplifier
Lecture 38 - Step response, sinusoidal steady state response
Lecture 39 - Loop gain and unity loop gain frequency; Opamp
Lecture 40 - Opamp realization using controlled sources; Delay in the loop
Lecture 41 - Negative feedback amplifier with ideal delay-small delays
Lecture 42 - Negative feedback amplifier with ideal delay-large delays
Lecture 43 - Negative feedback amplifier with parasitic poles and zeros
Lecture 44 - Negative feedback amplifier with parasitic poles and zeros; Nyquist criterion
Lecture 45 - Nyquist criterion; Phase margin
Lecture 46 - Phase margin
Lecture 47 - Single stage opamp realization
Lecture 48 - Two stage miller compensated opamp
Lecture 49 - Two stage miller compensated opamp.
Lecture 50 - Two and three stage miller compensated opamps; Feedforward compensated opamp
Lecture 51 - Two Stage Opamp
Lecture 52 - Two Stage Opamp; Three Stage and Triple Cascade Opamps
Lecture 53 - Common Mode Rejection Ratio; Example
Lecture 54 - Fully differential single stage opamp
Lecture 55 - Common mode feedback
Lecture 56 - Fully differential single stage opamp-2
Lecture 57 - Fully differential two stage opamp; Fully differential versus pseudo-differential
NPTEL Video Course - Electrical Engineering - NOC: Probability Foundations for Electrical Engineers

Subject Co-ordinator - Prof. R. Aravind, Dr. Andrew Thangaraj

Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Experiments, Outcomes and Events
Lecture 2 - Examples
Lecture 3 - Operations on Events
Lecture 4 - Examples
Lecture 5 - Sigma Fields and Probability
Lecture 6 - Discrete Sample Spaces
Lecture 7 - Union and Partition
Lecture 8 - Examples
Lecture 9 - Definition and Basic Properties
Lecture 10 - Bayes' Rule for Partitions
Lecture 11 - Examples
Lecture 12 - Example of Detection
Lecture 13 - Example
Lecture 14 - Independence of Events
Lecture 15 - Examples
Lecture 16 - Combining Independent Experiments
Lecture 17 - Conditional Independence
Lecture 18 - Examples and Computations with Conditional Independence
Lecture 19 - Binomial and Geometric Models
Lecture 20 - Examples
Lecture 21 - Definition and Discrete Setting
Lecture 22 - Random Variables and Events
Lecture 23 - Examples
Lecture 24 - Important distributions
Lecture 25 - Examples
Lecture 26 - Real-life modeling example
Lecture 27 - More Distributions
Lecture 28 - Conditional PMFs, Conditioning on an event, Indicator random variables
Lecture 29 - Example

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Multiple random variables and joint distribution
Lecture 31 - Example
Lecture 32 - Marginal PMF
Lecture 33 - Trinomial joint PMF
Lecture 34 - Events and Conditioning with Two Random Variables
Lecture 35 - Example
Lecture 36 - Independent random variables
Lecture 37 - More on independence
Lecture 38 - Example
Lecture 39 - Addition of Random Variables
Lecture 40 - Sum, Difference and Max of Two Random Variables
Lecture 41 - More Computations
Lecture 42 - Example
Lecture 43 - Real line as sample space
Lecture 44 - Probability density function (pdf)
Lecture 45 - Cumulative distribution function (CDF)
Lecture 46 - Continuous random variables
Lecture 47 - pdf and CDF of continuous random variables
Lecture 48 - Spinning pointer example
Lecture 49 - Important continuous distributions
Lecture 50 - More continuous distributions
Lecture 51 - Two-dimensional real sample space
Lecture 52 - Joint pdf and joint CDF
Lecture 53 - More on assigning probability to regions of x-y plain
Lecture 54 - Darts example and marginal pdfs
Lecture 55 - Independence to two continuous random variables
Lecture 56 - Examples
Lecture 57 - Prob[X > Y]
Lecture 58 - Transformations of random variables
Lecture 59 - CDF method
Lecture 60 - pdf method
Lecture 61 - Examples
Lecture 62 - One-to-one transformations
Lecture 63 - Expected Value or Mean of a Random Variable
Lecture 64 - Properties of Expectation
Lecture 65 - Expectation Computations for Important Distributions
Lecture 66 - Variance
Lecture 67 - Examples of Variance
Lecture 68 - Expectations with Two Random Variables
NPTEL Video Course - Electrical Engineering - NOC: Introduction to Photonics

Subject Co-ordinator - Prof. Balaji Srinivasan
Co-ordinating Institute - IIT - Madras
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Photonics
Lecture 2 - Diffraction and Interference
Lecture 3 - Tutorial on Ray Optics and Wave Optics
Lecture 4 - Lab Demonstration
Lecture 5 - Interferometers
Lecture 6 - Coherence
Lecture 7 - Spatial and Temporal Coherence
Lecture 8 - Tutorial on Wave Optics
Lecture 9 - Lab Demonstration
Lecture 10 - Electromagnetic Optics
Lecture 11 - Fiber Optics
Lecture 12 - Photon Properties
Lecture 13 - Lab Demonstration
Lecture 14 - Photon Optics
Lecture 15 - Tutorial on Photon optics
Lecture 16 - Photon interaction - 1
Lecture 17 - Photon interaction - 2
Lecture 18 - Lab Demonstration
Lecture 19 - Optical Amplification
Lecture 20 - Three Level systems
Lecture 21 - Four Level Systems
Lecture 22 - EDFA Introduction
Lecture 23 - EDFA Tutorial
Lecture 24 - Lasers Part - 1
Lecture 25 - Lab Demonstration
Lecture 26 - Lasers part- 2
Lecture 27 - Lasers part- 3
Lecture 28 - Lasers part- 4
Lecture 29 - Lab Demonstration

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Semiconductor light Source and detector - Band structure
Lecture 31 - Semiconductor light Source and detector - Light emission
Lecture 32 - Semiconductor light Source and detector LED Characteristics
Lecture 33 - Lab Demonstration
Lecture 34 - Semiconductor light Source and detector Laser Characteristics
Lecture 35 - Semiconductor Detectors - 1
Lecture 36 - Semiconductor Detectors - 2
Lecture 37 - Semiconductor Detectors - 3
Lecture 38 - Lab Demonstration
Lecture 39 - Semiconductor Detectors - 4
Lecture 40 - Light manipulation-Mallus' Law
Lecture 41 - Light manipulation-Birefringence
Lecture 42 - Light manipulation-Faraday Rotation
Lecture 43 - Lab Demonstration
Lecture 44 - Non-linear optics-Pockels effect
Lecture 45 - Non-linear optics-Kerr Effect
Lecture 46 - Lab Demonstration
Lecture 47 - Non-linear optics-stimulated Brillouin scattering
Lecture 48 - Non-linear optics-stimulated Raman scattering
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC:Multirate DSP
Subject Co-ordinator - Prof. David Kovil Pillai
Co-ordinating Institute - IIT - Madras
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1	Introduction to Multirate DSP - Part 1
Lecture 2	Introduction to Multirate DSP - Part 2
Lecture 3	Sampling and Nyquist criterion - Part 1
Lecture 4	Sampling and Nyquist criterion - Part 2
Lecture 5	Signal Reconstruction - Part 1
Lecture 6	Signal Reconstruction - Part 2
Lecture 7	Reconstruction filter - Part 1
Lecture 8	Reconstruction filter - Part 2
Lecture 9	Discrete time processing of continuous time signal - Part 1
Lecture 10	Discrete time processing of continuous time signal - Part 2
Lecture 11	DT processing of CT signal example
Lecture 12	Time scaling- upsampler and downsampler - Part 1
Lecture 13	Time scaling- upsampler and downsampler - Part 2
Lecture 14	Upsampler and downsampler- continued - Part 1
Lecture 15	Upsampler and downsampler- continued - Part 2
Lecture 16	Decimator properties
Lecture 17	Properties of Upsampler and Downsampler
Lecture 18	Fractional sampling rate change - Part 1
Lecture 19	Fractional sampling rate change - Part 2
Lecture 20	Multiplexer/ demultiplexer interpretation
Lecture 21	Noble identities and polyphase decomposition - Part 1
Lecture 22	Noble identities and polyphase decomposition - Part 2
Lecture 23	Polyphase decomposition continued - Part 1
Lecture 24	Polyphase decomposition continued - Part 2
Lecture 25	Introduction to Multirate Filter Banks
Lecture 26	Applications of Multirate - Part 1
Lecture 27	Applications of Multirate - Part 2
Lecture 28	Spectral Analysis of Filter Bank - Part 1
Lecture 29	Spectral Analysis of Filter Bank - Part 2

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 69 - Some more applications of MDSP
NPTEL Video Course - Electrical Engineering - NOC: LDPC and Polar Codes in 5G Standard

Subject Co-ordinator – Dr. Andrew Thangaraj
Co-ordinating Institute – IIT – Madras

Sub-Titles – Available / Unavailable | MP3 Audio Lectures – Available / Unavailable

Lecture 1 - Additive White Gaussian Noise (AWGN) Channel and BPSK
Lecture 2 - Bit Error Rate (BER) and Signal to Noise Ratio (SNR)
Lecture 3 - Error Correction Coding in a Digital Communication System
Lecture 4 - Complementary Error Function
Lecture 5 - Simulation of Uncoded BPSK and BER v/s Eb/N0 plot Generation in MATLAB/Octave
Lecture 6 - n = 3 Repetition Code
Lecture 7 - Implementation of n = 3 Repetition Code in MATLAB
Lecture 8 - (7,4) Hamming Code
Lecture 9 - A Brief Introduction to Linear Block Codes
Lecture 10 - Simulation of (7,4) Hamming Code in MATLAB
Lecture 11 - Low Density Parity Check Codes
Lecture 12 - LDPC Codes in 5G
Lecture 13 - Encoding LDPC codes in 5G
Lecture 14 - MATLAB programs for encoding LDPC codes
Lecture 16 - Soft Input and Soft Output (SISO) Decoder for the Single Parity Check (SPC) Code
Lecture 17 - Illustration of SISO decoder for (3,2) SPC code and min-sum approximation
Lecture 18 - SISO decoder for a general (n,n-1) SPC code
Lecture 19 - Soft-Input Soft-Output Iterative Message Passing Decoder for LDPC Codes
Lecture 20 - A Toy Example Illustration of the SISO Minsum Iterative Message Passing Decoder
Lecture 21 - Modifications to the Decoder
Lecture 22 - Implementation of SISO Layered Minsum Iterative Message Passing Decoder in MATLAB
Lecture 23 - Debugging and Improvements to the MATLAB Implementation
Lecture 24 - Rate Matching in LDPC Codes using Puncturing and Shortening
Lecture 25 - Implementation of Fixed Point Quantization and Offset Minsum in the Decoder
Lecture 26 - Introduction to Polar Codes
Lecture 27 - Channel Polarization, Definition of (N,K) Polar Code and Encoding
Lecture 28 - MATLAB Implementation for Encoding Polar Codes
Lecture 29 - Successive Cancellation (SC) Decoder for Polar Codes

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Successive Cancellation (SC) Decoder for a General (N,K) Polar Code
Lecture 31 - MATLAB Implementation of Successive Cancellation Decoder - Part 1
Lecture 32 - MATLAB Implementation of Successive Cancellation Decoder - Part 2
Lecture 33 - Successive Cancellation List Decoding
Lecture 34 - Fixed Point Quantization for SC Decoder and LDPC Decoder
Lecture 35 - MATLAB Implementation of Successive Cancellation List Decoding
Lecture 36 - Rate Matching for LDPC codes
Lecture 37 - Performance Comparison of LDPC codes and Polar Codes in 5G
NPTEL Video Course - Electrical Engineering - NOC: Electromagnetic Compatibility, EMC

Subject Co-ordinator - Prof. Daniel Mansson, Prof. Rajeev Thottappillil

Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to EMC - Definitions
Lecture 2 - Introduction to EMC - Sources, units etc
Lecture 3 - Electromagnetic principles - Faraday's and Ampere's equations
Lecture 4 - Electromagnetic principles - Gauss's equation, boundary conditions
Lecture 5 - Electromagnetic principles - Uniform plane wave
Lecture 6 - Electromagnetic principles - Transmission lines
Lecture 7 - Electromagnetic principles - Dipoles
Lecture 8 - High-frequency behaviour of components - Conductors
Lecture 9 - High-frequency behaviour of components - Capacitors, inductors, resistors
Lecture 10 - High-frequency behaviour of components - Mechanical switches and transformers
Lecture 11 - Crosstalk or near-field coupling - Capacitive coupling, inductive coupling, common-impedance coupling
Lecture 12 - Crosstalk or near-field coupling - Crosstalk combinations
Lecture 13 - Crosstalk or near-field coupling - Coupling to shielded cables
Lecture 14 - Electromagnetic coupling in the far-field
Lecture 15 - Field Coupling - Exercises
Lecture 16 - Solutions to EMC problems - Lay out and control of interfaces
Lecture 17 - Solutions to EMC problems - Grounding or earthing
Lecture 18 - Solutions to EMC problems - Electromagnetic Shielding
Lecture 19 - Solutions to EMC problems - Electromagnetic Shielding (Continued...)
Lecture 20 - Solutions to EMC problems - Shielded cables
Lecture 21 - Solutions to EMC problems - Filters and Surge protectors
Lecture 22 - Lightning Protection - Introduction
Lecture 23 - Lightning protection - Currents, charges and fields
Lecture 24 - Lightning Protection - Buildings
Lecture 25 - Lightning Protection - Towers, Lightning safety
Lecture 26 - EMC Requirements and Standard, Testing and Difficulties - 1
Lecture 27 - EMC Requirements and Standard, Testing and Difficulties - 2
Lecture 28 - Intentional Electromagnetic Interference or IEMI - 1
Lecture 29 - Intentional Electromagnetic Interference or IEMI - 2

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Course - Electrical Engineering - NOC: Optimal Control

Subject Co-ordinator - Prof. Barjeev Tyagi

Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction and Performance Index
Lecture 2 - Basic Concepts of Calculus of Variation
Lecture 3 - The Basic Variational Problem
Lecture 4 - Fixed End Point Problem
Lecture 5 - Free End Point Problem
Lecture 6 - Free End Point Problem (Continued...)
Lecture 7 - Free End Point Problem (Continued...)
Lecture 8 - Free End Point Problem (Continued...)
Lecture 9 - Optimum of Functions with Conditions
Lecture 10 - Optimum of Functions with Conditions (Lagrange Multiplier Method)
Lecture 11 - Optimum of Functional with Conditions
Lecture 12 - Variational Approach to Optimal Control Systems
Lecture 13 - Variational Approach to Optimal Control Systems (Continued...)
Lecture 14 - Linear Quadratic Optimal Control Systems
Lecture 15 - Linear Quadratic Optimal Control Systems (Continued...)
Lecture 16 - Linear Quadratic Optimal Control Systems (Continued...)
Lecture 17 - Linear Quadratic Optimal Control Systems (Continued...)
Lecture 18 - Linear Quadratic Optimal Control Systems (Continued...)
Lecture 19 - Linear Quadratic Optimal Control Systems (Optimal Value of Performance Index)
Lecture 20 - Infinite Horizon Regulator Problem
Lecture 21 - Infinite Horizon Regulator Problem (Continued...)
Lecture 22 - Analytical Solution of MDRE - State Transition Matrix Approach
Lecture 23 - Analytical Solution of MDRE - Similarity Transformation Approach
Lecture 24 - Analytical Solution of MDRE - Similarity Transformation Approach (Continued...)
Lecture 25 - Frequency Domain Interpretation of LQR - Linear Time Invariant System
Lecture 26 - Frequency Domain Interpretation of LQR - Linear Time Invariant System (Continued...)
Lecture 27 - LQR with a Specified Degree of Stability
Lecture 28 - Inverse Matrix Riccati Equation
Lecture 29 - Linear Quadratic Tracking System

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Discrete-Time Optimal Control Systems
Lecture 31 - Discrete-Time Optimal Control Systems (Continued...)
Lecture 32 - Discrete-Time Optimal Control Systems (Continued...)
Lecture 33 - Matrix Discrete Riccati Equation
Lecture 34 - Analytical Solution of Matrix Difference Riccati Equation
Lecture 35 - Analytical Solution of Matrix Difference Riccati Equation (Continued...)
Lecture 36 - Optimal Control using Dynamic Programming
Lecture 37 - The Hamilton-Jacobi-Bellman (HJB) Equation
Lecture 38 - LQR System Using HJB Equation
Lecture 39 - Time Optimal Control System - Constrained Input
Lecture 40 - Time Optimal Control System (Continued...)
Lecture 1 - Foundation for software defined radio
Lecture 2 - Components of a software defined radio
Lecture 3 - Software defined radio architectures - Part I
Lecture 4 - Software defined radio architectures - Part II
Lecture 5 - Software defined radio architectures - Part III
Lecture 6 - Software defined radio architectures - Part IV
Lecture 7 - Distortion Parameters - Part I
Lecture 8 - Distortion Parameters - Part II
Lecture 9 - Distortion Parameters
Lecture 10 - Distortion Parameters
Lecture 11 - Power Amplifiers
Lecture 12 - Power Amplifiers
Lecture 13 - Case study-I
Lecture 14 - Case study-II
Lecture 15 - Behavioral models for representing nonlinear distortions
Lecture 16 - Linearization Techniques for nonlinear distortion
Lecture 17 - Predistortion Techniques for nonlinearity distortion in SDR
Lecture 18 - Basic Digital Predistortion Techniques for nonlinear distortion in SDR
Lecture 19 - State-of-the-art Digital Predistortion Techniques for Nonlinear Distortion in SDR
Lecture 20 - Digital Predistortion Techniques for Linear as well as Nonlinear Distortion in SDR
NPTEL Video Course - Electrical Engineering - NOC: Electrical Distribution System Analysis

Subject Co-ordinator - Prof. G. B. Kumbhar

Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Electrical Distribution System
Lecture 2 - Components of Distribution System Substation and Busbar Layouts
Lecture 3 - Components of Distribution System and Feeder Configurations
Lecture 4 - Nature of Loads in a Distribution System
Lecture 5 - Load Allocation in a Distribution System
Lecture 6 - K Factors and Their Applications
Lecture 7 - Analysis of Uniformly Distributed
Lecture 8 - Lumping Loads in Geometric Configurations Rectangular
Lecture 9 - Lumping Loads in Geometric Configurations Triangular
Lecture 10 - Impedance of Distribution Lines and Feeders - Part I
Lecture 11 - Series Impedance of Distribution Lines and Feeders - Part II
Lecture 12 - Models of Distribution Lines and Cables
Lecture 13 - Modelling of Single-Phase and Three-Phase Transformers
Lecture 14 - Modelling of Three-Phase Transformers - Part I
Lecture 15 - Modelling of Three-Phase Transformers - Part II
Lecture 16 - Modelling of Three-Phase Transformers - Part III
Lecture 17 - Modelling of Three-Phase Transformers - Part IV
Lecture 18 - Modelling of Step Voltage Regulators - Part I
Lecture 19 - Modelling of Step Voltage Regulators - Part II
Lecture 20 - Modelling of Step Voltage Regulators - Part III
Lecture 21 - Modelling of Step Voltage Regulators - Part IV
Lecture 22 - Load Models in Distribution System - Part I
Lecture 23 - Load Models in Distribution System - Part II
Lecture 24 - Modelling of Distributed Generation
Lecture 25 - Applications and Modeling of Capacitor Banks
Lecture 26 - Summary of Modelling of Distribution System Components
Lecture 27 - Backward/Forward Sweep Load Flow Analysis - Part I
Lecture 28 - Backward/Forward Sweep Load Flow Analysis - Part II
Lecture 29 - Direct Approach Based Load Flow Analysis - Part I
Lecture 30 - Direct Approach Based Load Flow Analysis - Part II
Lecture 31 - Direct Approach Based Load Flow Analysis - Part III
Lecture 32 - Direct Approach Based Load Flow Analysis
Lecture 33 - Gauss Implicit Z-matrix Method
Lecture 34 - Sequence Component Based Short Circuit Analysis
Lecture 35 - Thevenin's Equivalent and Phase Variable Based Short Circuit Analysis
Lecture 36 - Direct Approach for Short-Circuit Analysis
Lecture 37 - Direct Approach for Short-Circuit Analysis
Lecture 38 - Direct Approach for Short-Circuit Analysis
Lecture 39 - Direct Approach for Short-Circuit Analysis
Lecture 40 - Applications of Distribution System Analysis

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
NPTEL Video Course - Electrical Engineering - NOC: Introduction to Smart Grid

Subject Co-ordinator - Prof. Premalata Jena, Prof. N.P. Padhy

Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Smart Grid - I
Lecture 2 - Introduction to Smart Grid - II
Lecture 3 - Architecture of smart grid system
Lecture 4 - Standards for smart grid system
Lecture 5 - Elements and Technologies of smart grid system - I
Lecture 6 - Elements and Technologies of smart grid system - II
Lecture 7 - Distributed Generation Resources - I
Lecture 8 - Distributed Generation Resources - II
Lecture 9 - Distributed Generation Resources - III
Lecture 10 - Distributed Generation Resources - IV
Lecture 11 - Wide Area Monitoring System - I
Lecture 12 - Wide Area Monitoring System - II
Lecture 13 - Phasor Estimation - I
Lecture 14 - Phasor Estimation - II
Lecture 15 - Digital Relays for Smart Grid Protection
Lecture 16 - Islanding Detection Techniques - I
Lecture 17 - Islanding Detection Techniques - II
Lecture 18 - Islanding Detection Techniques - III
Lecture 19 - Smart Grid Protection - I
Lecture 20 - Smart Grid Protection - II
Lecture 21 - Smart Grid Protection - III
Lecture 22 - Smart Grid Protection - IV
Lecture 23 - Modelling of Storage Devices
Lecture 24 - Modelling of DC Smart Grid Components
Lecture 25 - Operation and Control of AC Microgrid - I
Lecture 26 - Operation and Control of AC Microgrid - II
Lecture 27 - Operation and Control of DC Microgrid - I
Lecture 28 - Operation and Control of DC Microgrid - II
Lecture 29 - Operation and Control of AC-DC hybrid Microgrid - I

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimath.in
NPTEL Video Course - Electrical Engineering - NOC:Facts Devices

Subject Co-ordinator - Prof. Avik Bhattacharya
Co-ordinating Institute - IIT - Roorkee
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction - I
Lecture 2 - Introduction - II
Lecture 3 - Switch Realization
Lecture 4 - PWM - I
Lecture 5 - PWM - II
Lecture 6 - Closed Loop Control
Lecture 7 - Multi Level Inverter - I
Lecture 8 - Multi Level Inverter - II
Lecture 9 - Multi Level Inverter - III
Lecture 10 - Shunt Compensator Analysis
Lecture 11 - Shunt Compensator TCR and TSC - I
Lecture 12 - Shunt Compensator TCR and TSC - II
Lecture 13 - Static Var Compensator - I
Lecture 14 - Static Var Compensator - II
Lecture 15 - STATCOM - I
Lecture 16 - STATCOM - II
Lecture 17 - STATCOM/SVC Comparisons
Lecture 18 - External Control Design of Static Var Compensator
Lecture 19 - DSTATCOM
Lecture 20 - Design of DSTATCOM
Lecture 21 - Series Compensator - I
Lecture 22 - Series Compensator - II
Lecture 23 - GCSC and SSSC
Lecture 24 - SSSC - II
Lecture 25 - SSSC - III and TSSC
Lecture 26 - TSSC - II and TCSC
Lecture 27 - TCSC Characteristics and Control
Lecture 28 - Voltage and Phase Angle Regulation
Lecture 29 - Voltage and Phase Angle Regulator Device - I

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Voltage and Phase Angle Regulator Device - II
Lecture 31 - UPQC Introduction and Classification
Lecture 32 - UPQC Classification - I
Lecture 33 - Operation and Control of UPQC - II
Lecture 34 - Operation and Control of UPQC - III
Lecture 35 - UPFC
Lecture 36 - Control Structure of UPFC
Lecture 37 - Comparison of UPFC with PAR and Series Compensators
Lecture 38 - Interline Power Flow Controller (IPFC) - I
Lecture 39 - Interline Power Flow Controller (IPFC) - II
Lecture 40 - Practical Application and Conclusion
Lecture 1 - Introduction to State Space
Lecture 2 - State Space Representation
Lecture 3 - State Space Representation
Lecture 4 - State Space Representation
Lecture 5 - State Space Representation
Lecture 6 - State Space Representation
Lecture 7 - State Space Representation
Lecture 8 - State Space Representation
Lecture 9 - State Space Representation
Lecture 10 - State Space Representation
Lecture 11 - Modelling of Mechanical Systems in State Space
Lecture 12 - Modelling of DC Servo Motor - Part I
Lecture 13 - Modelling of DC Servo Motor - Part II
Lecture 14 - Determination of Transfer Function from State Space Model - Part I
Lecture 15 - Determination of Transfer Function from State Space Model - Part II
Lecture 16 - Stability Analysis in State Space
Lecture 17 - Stability Analysis in State Space - Part II
Lecture 18 - Stability Analysis in State Space
Lecture 19 - Stability Analysis in State Space
Lecture 20 - Stability Analysis in State Space
Lecture 21 - Concept of Diagonalization
Lecture 22 - Solution of State Equation
Lecture 23 - Solution of State Equation (Forced System)
Lecture 24 - Steady State Error for State Space System
Lecture 25 - State Transition Matrix - Part I
Lecture 26 - State Transition Matrix - Part II
Lecture 27 - State Transition Matrix using Cayley-Hamilton Theorem - Part III
Lecture 28 - MATLAB Programming with State Space
Lecture 29 - Controllability in State Space - Part I
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Controllability in State Space</td>
<td>II</td>
</tr>
<tr>
<td>31</td>
<td>Observability in State Space</td>
<td>I</td>
</tr>
<tr>
<td>32</td>
<td>Observability in State Space</td>
<td>II</td>
</tr>
<tr>
<td>33</td>
<td>Pole Placement by State Feedback</td>
<td>I</td>
</tr>
<tr>
<td>34</td>
<td>Pole Placement by State Feedback</td>
<td>II</td>
</tr>
<tr>
<td>35</td>
<td>Pole Placement by State Feedback</td>
<td>III</td>
</tr>
<tr>
<td>36</td>
<td>Tracking Problem in State Feedback Design</td>
<td>I</td>
</tr>
<tr>
<td>37</td>
<td>Tracking Problem in State Feedback Design</td>
<td>II</td>
</tr>
<tr>
<td>38</td>
<td>State Observer Design</td>
<td>I</td>
</tr>
<tr>
<td>39</td>
<td>State Observer Design</td>
<td>II</td>
</tr>
<tr>
<td>40</td>
<td>State Observer Design</td>
<td>III</td>
</tr>
</tbody>
</table>
NPTEL Video Course - Electrical Engineering - NOC: Computer Aided Power System Analysis

Subject Co-ordinator - Prof. Biswarup Das

Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Modeling of Power System Components
Lecture 2 - Modeling of Power System Components (Continued...)
Lecture 3 - Bus Admittance Matrix
Lecture 4 - Bus Admittance Matrix with Mutual Impedance
Lecture 5 - Bus Admittance Matrix with mutual impedance (Continued...)
Lecture 6 - Power flow equations and classification of buses
Lecture 7 - Basic Gauss - Seidel Numerical Method
Lecture 8 - Gauss - Seidel Load Flow (GSLF)
Lecture 9 - GSLF with Multiple Generators
Lecture 10 - Example of GSLF
Lecture 11 - Basics of Newton Raphson Numerical Method
Lecture 12 - Newton - Raphson Load Flow (NRLF) in Polar Co-Ordinate
Lecture 13 - NRLF in polar co-ordinate (Continued...)
Lecture 14 - NRLF in polar co-ordinate (Continued...)
Lecture 15 - NRLF (Polar) Algorithm and Example
Lecture 16 - NRLF in rectangular coordinate
Lecture 17 - NRLF in rectangular coordinate (Continued...)
Lecture 18 - NRLF in rectangular coordinate (Continued...)
Lecture 19 - Example of NRLF (Rectangular) Method
Lecture 20 - Fast decoupled load flow (FDLF)
Lecture 21 - FDLF (Continued...)
Lecture 22 - FDLF (Continued...)
Lecture 23 - AC- DC Load Flow
Lecture 24 - AC- DC Load Flow (Continued...)
Lecture 25 - AC- DC Load Flow (Continued...)
Lecture 26 - Sparsity and Gaussian Elimination
Lecture 27 - Gaussian Elimination Method
Lecture 28 - Example of Gaussian Elimination Method
Lecture 29 - Gaussian Elimination and Optimal Ordering

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Triangular Factorization
Lecture 31 - LU Decomposition
Lecture 32 - Introduction to Contingency Analysis
Lecture 33 - Linear Sensitivity Factor
Lecture 34 - Linear Sensitivity Factors (Continued...)
Lecture 35 - Line outage sensitivity factor
Lecture 36 - Line outage sensitivity factor (Continued...)
Lecture 37 - Line outage sensitivity factor (Continued...)
Lecture 38 - State Estimation Technique
Lecture 39 - Weighted Least Square (WLS) Method
Lecture 40 - WLS (Continued...)
Lecture 41 - WLS Examples
Lecture 42 - Error Analysis
Lecture 43 - Error Analysis (Continued...)
Lecture 44 - Bad Data Detection
Lecture 45 - Power system state estimation
Lecture 46 - Power system state estimation (Continued...)
Lecture 47 - Power system state estimation (Continued...)
Lecture 48 - Power system state estimation (Continued...)
Lecture 49 - Fault Analysis
Lecture 50 - Fault Analysis (Continued...)
Lecture 51 - Fault Analysis (Continued...)
Lecture 52 - Fault Analysis (Continued...)
Lecture 53 - Fault Analysis (Continued...)
Lecture 54 - Fault Analysis (Continued...)
Lecture 55 - Fault Analysis (Continued...)
Lecture 56 - Fault Analysis (Continued...)
Lecture 57 - Fault Analysis (Continued...)
Lecture 58 - Fault Analysis (Continued...)
Lecture 59 - Fault Analysis (Continued...)
Lecture 60 - Fault Analysis (Continued...)
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC: Advance Power Electronics and Control

Subject Co-ordinator - Prof. Avik Bhattacharyya
Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction
Lecture 2 - Basic Concept of Switches
Lecture 3 - Device Physics - I
Lecture 4 - Device Physics - II
Lecture 5 - Device Physics - III
Lecture 6 - Device Physics - IV
Lecture 7 - Application and Analysis of Switches - I
Lecture 8 - Application and Analysis of Switches - II
Lecture 9 - Single Phase Converter
Lecture 10 - Single Phase Converters - II
Lecture 11 - Single Phase Converters - III
Lecture 12 - Three Phase Converters - I
Lecture 13 - Three Phase Converters - II
Lecture 14 - Multipulse Converters II
Lecture 15 - Effect of Source Inductance and PWM Rectifiers
Lecture 16 - PWM Rectifiers - II
Lecture 17 - PWM Rectifiers - III and Power Factor Improvement Techniques
Lecture 18 - PWM Rectifiers - IV and Power Factor Improvement Techniques - II
Lecture 19 - Power Factor Improvement Techniques III and Non Isolated DC-DC Converters
Lecture 20 - Non Isolated DC-DC Converters - II
Lecture 21 - Non Isolated and Isolated DC-DC Converters and Choppers
Lecture 22 - Isolated DC-DC Converters and Choppers
Lecture 23 - Isolated DC-DC Converters - II
Lecture 24 - Isolated DC-DC Converters - III
Lecture 25 - Isolated DC-DC Converters - IV and VSI and CSI
Lecture 26 - VSI and CSI
Lecture 27 - VSI and CSI II and MLI
Lecture 28 - PWM Techniques II and MLI
Lecture 29 - MLI II and ZSI

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - ZSI II and Space Vector Modulation (SVM)
Lecture 31 - SVM II and AC to AC Converters
Lecture 32 - SVM III and AC to AC Converters
Lecture 33 - Cycloconverters and Matrix Converters
Lecture 34 - Matrix Converter - II
Lecture 35 - Matrix Converter - III and Power Quality Mitigation Devices
Lecture 36 - Power Quality Mitigation Devices - II
Lecture 37 - Linear and Non Linear Control in Power Electronics - I
Lecture 38 - Linear and Non Linear Control in Power Electronics - II
Lecture 39 - Non-Linear Control in Power Electronics
Lecture 40 - Application and Conclusion
NPTEL Video Course - Electrical Engineering - NOC:CMOS Digital VLSI Design

Subject Co-ordinator - Prof. Sudeb Dasgupta
Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - MOS Transistor Basics - I
Lecture 2 - MOS Transistor Basics - II
Lecture 3 - MOS Transistor Basics - III
Lecture 4 - MOS Parasitics and SPICE Model
Lecture 5 - CMOS Inverter Basics - I
Lecture 6 - CMOS Inverter Basics - II
Lecture 7 - CMOS Inverter Basics - III
Lecture 8 - Power Analysis - I
Lecture 9 - Power Analysis - II
Lecture 10 - SPICE Simulation - I
Lecture 11 - SPICE Simulation - II
Lecture 12 - Combinational Logic Design - I
Lecture 13 - Combinational Logic Design - II
Lecture 14 - Combinational Logic Design - III
Lecture 15 - Combinational Logic Design - IV
Lecture 16 - Combinational Logic Design - V
Lecture 17 - Combinational Logic Design - VI
Lecture 18 - Combinational Logic Design - VII
Lecture 19 - Combinational Logic Design - VIII
Lecture 20 - Combinational Logic Design - IX
Lecture 21 - Combinational Logic Design - X
Lecture 22 - Logical Efforts - I
Lecture 23 - Logical Efforts - II
Lecture 24 - Logical Efforts - III
Lecture 25 - Sequential Logic Design - I
Lecture 26 - Sequential Logic Design - II
Lecture 27 - Sequential Logic Design - III
Lecture 28 - Sequential Logic Design - IV
Lecture 29 - Sequential Logic Design - V

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Sequential Logic Design - VI
Lecture 31 - Sequential Logic Design - VII
Lecture 32 - Sequential Logic Design - VIII
Lecture 33 - Clocking Strategies for Sequential Design - I
Lecture 34 - Clocking Strategies for Sequential Design - II
Lecture 35 - Clocking Strategies for Sequential Design - III
Lecture 36 - Clocking Strategies for Sequential Design - IV
Lecture 37 - Sequential Logic Design - IX
Lecture 38 - Clocking Strategies for Sequential Design - V
Lecture 39 - Concept of Memory and its Designing - I
Lecture 40 - Concept of Memory and its Designing - II
Lecture 1 - Introduction and Objectives of the course
Lecture 2 - Definition of a system and history of semiconductors
Lecture 3 - Products and levels of packaging
Lecture 4 - Packaging aspects of handheld products; Case studies in applications
Lecture 5 - Case Study (continued); Definition of PWB, summary and Questions for review
Lecture 6 - Basics of Semiconductor and Process flowchart; Video on “Sand-to-Silicon”
Lecture 7 - Wafer fabrication, inspection and testing
Lecture 8 - Wafer packaging; Packaging evolution; Chip connection choices
Lecture 9 - Wire bonding, TAB and flipchip-1
Lecture 10 - Wire bonding, TAB and flipchip-2; Tutorials
Lecture 11 - Why packaging? & Single chip packages or modules (SCM)
Lecture 12 - Commonly used packages and advanced packages; Materials in packages
Lecture 13 - Advances packages (continued); Thermal mismatch in packages; Current trends in packaging
Lecture 14 - Multichip modules (MCM)-types; System-in-package (SIP); Packaging roadmaps; Hybrid circuits; Quiz
Lecture 15 - Electrical Issues - I; Resistive Parasitic
Lecture 16 - Electrical Issues - II; Capacitive and Inductive Parasitic
Lecture 17 - Electrical Issues - III; Layout guidelines and the Reflection problem
Lecture 18 - Electrical Issues - IV; Interconnection
Lecture 19 - Quick Tutorial on packages; Benefits from CAD; Introduction to DFM, DFR & DFT
Lecture 20 - Components of a CAD package and its highlights
Lecture 21 - Design Flow considerations; Beginning a circuit design with schematic work and component layout
Lecture 22 - Demo and examples of layout and routing; Technology file generation from CAD; DFM check list and design rules
Lecture 23 - Review of CAD output files for PCB fabrication; Photo plotting and mask generation
Lecture 24 - Process flow-chart; Vias; PWB substrates
Lecture 25 - Substrates continued; Video highlights; Surface preparation
Lecture 26 - Photoresist and application methods; UV exposure and developing; Printing technologies for PWBs
Lecture 27 - PWB etching; Resist stripping; Screen-printing technology
Lecture 28 - Through-hole manufacture process steps; Panel and pattern plating methods
Lecture 29 - Video highlights on manufacturing; Solder mask for PWBs; Multilayer PWBs; Introduction to microvias
Lecture 30 - Microvia technology and Sequential build-up technology process flow for high-density interconnected systems
Lecture 31 - Conventional Vs HDI technologies; Flexible circuits; Tutorial session
Lecture 32 - SMD benefits; Design issues; Introduction to soldering
Lecture 33 - Reflow and Wave Soldering methods to attach SMDs
Lecture 34 - Solders; Wetting of solders; Flux and its properties; Defects in wave soldering
Lecture 35 - Vapour phase soldering, BGA soldering and Desoldering/Repair; SMT failures
Lecture 36 - SMT failure library and Tin Whiskers
Lecture 37 - Tin-lead and lead-free solders; Phase diagrams; Thermal profiles for reflow soldering; Lead-free soldering
Lecture 38 - Lead-free solder considerations; Green electronics; RoHS compliance and e-waste recycling issues
Lecture 39 - Thermal Design considerations in systems packaging
Lecture 40 - Introduction to embedded passives; Need for embedded passives; Design Library; Embedded resistor processes
Lecture 41 - Embedded capacitors; Processes for embedding capacitors; Case study examples; Summary of materials
Lecture 42 - Chapter-wise summary
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Power Electronics and Distributed Generation

Subject Co-ordinator - Dr. Vinod John

Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Course introduction and overview
Lecture 2 - Distributed generation technologies
Lecture 3 - Distributed storage technologies
Lecture 4 - Distribution system protection
Lecture 5 - Circuit breaker coordination
Lecture 6 - Symmetrical component analysis and sequence excitation
Lecture 7 - Modeling of distribution system components
Lecture 8 - Protection components
Lecture 9 - Impact of distributed generation of distribution protection
Lecture 10 - Consumption and distribution grounding
Lecture 11 - Islanding of distribution systems
Lecture 12 - Modeling of islanded distribution systems
Lecture 13 - Distribution system problems and examples
Lecture 14 - Distribution system problems and examples continued
Lecture 15 - Anti-islanding methods
Lecture 16 - Solid state circuit switching
Lecture 17 - Relaying for distributed generation
Lecture 18 - Feeder voltage regulation
Lecture 19 - Grounding, distribution protection coordination problems and examples
Lecture 20 - Ring and network distribution
Lecture 21 - Economic evaluation of DG systems
Lecture 22 - Design for effective initial cost
Lecture 23 - Single phase inverters
Lecture 24 - DC bus design in voltage source inverter
Lecture 25 - Electrolytic capacitor reliability and lifetime
Lecture 26 - Inverter switching and average model
Lecture 27 - Common mode and differential mode model of inverters
Lecture 28 - Two leg single phase inverter
Lecture 29 - Distribution system problems, and examples

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - DG evaluation problems and examples
Lecture 31 - Switch selection in two level voltage source inverters and loss evaluation
Lecture 32 - Thermal model, management and cycling failure of IGBT modules
Lecture 33 - Semiconductor switch design reliability considerations
Lecture 34 - AC filters for grid connected inverters
Lecture 35 - AC inductor design and need for LCL filter
Lecture 36 - LCL filter design
Lecture 37 - Examples in power electronic design for DG systems
Lecture 38 - Examples in power electronic design for DG systems continued
Lecture 39 - Higher order passive damping design for LCL filters
Lecture 40 - Balance of hardware component for inverters in DG systems
NPTEL Video Course - Electrical Engineering - Pulse width Modulation for Power Electronic Converters

Subject Co-ordinator - Dr. G. Narayanan

Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1	Electronic switches
Lecture 2	DC - DC converters
Lecture 3	DC - AC converters
Lecture 4	Multilevel converters - I
Lecture 5	Multilevel converters - II
Lecture 6	Applications of voltage source converter - I
Lecture 7	Applications of voltage source converter - II
Lecture 8	Applications of voltage source converter - III
Lecture 9	Purpose of PWM - I
Lecture 10	Purpose of PWM - II
Lecture 11	Low switching frequency PWM - I
Lecture 12	Low switching frequency PWM - II
Lecture 13	Selective harmonic elimination
Lecture 14	Off-line optimized pulsewidth modulation
Lecture 15	Sine-triangle pulsewidth modulation
Lecture 16	Harmonic injection pulsewidth modulation
Lecture 17	Bus-clamping pulsewidth modulation
Lecture 18	Triangle-comparison based PWM for three-phase inverter
Lecture 19	Concept of space vector
Lecture 20	Conventional space vector PWM
Lecture 21	Space vector based bus-clamping PWM
Lecture 22	Space vector based advanced bus-clamping PWM
Lecture 23	Harmonic analysis of PWM techniques
Lecture 24	Analysis of RMS line current ripple using the notion of stator flux ripple
Lecture 25	Evaluation of RMS line current ripple using the notion of stator flux ripple
Lecture 26	Analysis and design of PWM techniques from line current ripple perspective
Lecture 27	Instantaneous and average dc link current in a voltage source inverter
Lecture 28	DC link current and DC capacitor current in a voltage source inverter
Lecture 29	Analysis of torque ripple in induction motor drives - I

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Analysis of torque ripple in induction motor drives - II
Lecture 31 - Evaluation of conduction loss in three-phase inverter
Lecture 32 - Evaluation of switching loss in three-phase inverter
Lecture 33 - Design of PWM for reduced switching loss in three-phase inverter
Lecture 34 - Effect of dead-time on inverter output voltage for continuous PWM schemes
Lecture 35 - Effect of dead-time on inverter output voltage for bus-clamping PWM schemes
Lecture 36 - Analysis of overmodulation in sine-triangle PWM from space vector perspective
Lecture 37 - Overmodulation in space vector modulated inverter
Lecture 38 - PWM for three-level neutral-point-clamped inverter - I
Lecture 39 - PWM for three-level neutral-point-clamped inverter - II
Lecture 40 - PWM for three-level neutral-point-clamped inverter - III
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Switched Mode Power Conversion

Subject Co-ordinator - Prof. L. Umanand, Prof. V. Ramanarayanan

Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to DC-DC converter
Lecture 2 - Diode
Lecture 3 - Controlled Switches
Lecture 4 - Prior Art
Lecture 5 - Inductor
Lecture 6 - Transformer
Lecture 7 - Capacitor
Lecture 8 - Issues related to switches
Lecture 9 - Energy storage - Capacitor
Lecture 10 - Energy storage - Inductor
Lecture 11 - Primitive Converter
Lecture 12 - Non-Isolated converter - I
Lecture 13 - Non-Isolated converter - II
Lecture 14 - Isolated Converters - I
Lecture 15 - Isolated Converters - II
Lecture 16 - Conduction Mode
Lecture 17 - Problem set - I
Lecture 18 - Problem set - II
Lecture 19 - Modeling DC-DC converters
Lecture 20 - State space representation - I
Lecture 21 - State Space representation - II
Lecture 22 - Circuit Averaging - I
Lecture 23 - Circuit Averaging - II
Lecture 24 - State Space Model of Boost Converter
Lecture 25 - DC-DC converter controller
Lecture 26 - Controller Structure
Lecture 27 - PID Controller - I
Lecture 28 - PID Controller - II
Lecture 29 - PID Controller - III

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Implementation of PID controller
Lecture 31 - Pulse Width Modulator
Lecture 32 - Controller Design - I
Lecture 33 - Controller Design - II
Lecture 34 - Controllers and Sensing Circuit
Lecture 35 - Regulation of Multiple outputs - I
Lecture 36 - Regulation of Multiple outputs - II
Lecture 37 - Current Control
Lecture 38 - Unity Power Factor Converter
Lecture 39 - Magnetic Design
Lecture 40 - DC-DC Converter Design
NPTEL Video Course - Electrical Engineering - Basic Electrical Technology

Subject Co-ordinator - Prof. L. Umanand

Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Basic Electrical Technology
Lecture 2 - Passive Components
Lecture 3 - Sources
Lecture 4 - Kirchoff's Law
Lecture 5 - Modelling of Circuit - Part 1
Lecture 6 - Modelling of Circuit - Part 2
Lecture 7 - Analysis Using MatLab
Lecture 8 - Sinusoidal steady state
Lecture 9 - Transfer Function and Pole Zero domain
Lecture 10 - Transfer function & pole zero
Lecture 11 - The Sinusoid
Lecture 12 - Phasor Analysis - Part 1
Lecture 13 - Phasor Analysis - Part 2
Lecture 14 - Power Factor
Lecture 15 - Power ports
Lecture 16 - Transformer Basics - Part 1
Lecture 17 - Transformer Basics - Part 2
Lecture 18 - Transformer Basics - Part 3
Lecture 19 - The Practical Transformer - Part 1
Lecture 20 - The Practical Transformer - Part 2
Lecture 21 - The Practical Transformer - Part 3
Lecture 22 - DC Machines - Part 1
Lecture 23 - DC Machines - Part 2
Lecture 24 - DC Generators - Part 1
Lecture 25 - DC Generators - Part 2
Lecture 26 - DC Motors - Part 1
Lecture 27 - DC Motors - Part 2
Lecture 28 - DC Motors - Part 3
Lecture 29 - Three Phase System - Part 1

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Three Phase System - Part 2
Lecture 31 - Three Phase System - Part 3
Lecture 32 - Three Phase System - Part 4
Lecture 33 - Three Phase Transformer - Part 1
Lecture 34 - Three Phase Transformer - Part 2
Lecture 35 - Induction Motor - Part 1
Lecture 36 - Induction Motor - Part 2
Lecture 37 - Induction Motor - Part 3
Lecture 38 - Induction Motor - Part 4
Lecture 39 - Synchronous Machine
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - Industrial Drives - Power Electronics

Subject Co-ordinator - Prof. K. Gopakumar

Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Electric Drive
Lecture 2 - Controlled Rectifier - Part-1
Lecture 3 - Controlled Rectifier - Part-2 (Three phase)
Lecture 4 - Controlled Rectifier - Part-3 (Three phase)
Lecture 5 - Controlled Rectifier - Part-4 (Three Phase)
Lecture 6 - Controlled Rectifier - Part-5 (Three Phase)
Lecture 7 - Power Electronics Improvements
Lecture 8 - Four Quadrant Dc to Dc Converter
Lecture 9 - Sine Triangle PWM Control of Converter
Lecture 10 - Front-end Ac-Dc Converter with harmonic control
Lecture 11 - Ac to Dc Converter Close Loop Control Schematic
Lecture 12 - Ac-Dc Converter Close loop Control Block Diagram
Lecture 13 - Design of the Converter Controller & AC to DC
Lecture 14 - Front-End Ac to Dc Converter-Design
Lecture 15 - Front-End Ac to Dc Converter - Simulation study
Lecture 16 - Dc Motor Speed Control - Introduction
Lecture 17 - Dc Motor Speed Control - Block Diagram
Lecture 18 - Dc Motor Speed Control Current Control & S C L
Lecture 19 - Dc-Motor Speed Control Controller Design - Part-1
Lecture 20 - Dc Motor Speed Control Controller Design - Part-2
Lecture 21 - Dc Motor Speed Control Controller Design - Part-3
Lecture 22 - Basics of DC to AC Converter - Part-1
Lecture 23 - Basics of DC to AC Converter - Part-2
Lecture 24 - Inverter Sine Triangle PWM
Lecture 25 - Inverter - Current Hysteresis Controlled PWM
Lecture 26 - C H controlled & Basics of space vector PWM
Lecture 27 - Space Vector PWM - Part-2
Lecture 28 - Space Vector PWM - Part-3
Lecture 29 - Space Vector PWM Signal Generation

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimath.in
Lecture 30 - Speed Control of Induction Motor - Part-1
Lecture 31 - Speed Control of Induction Motor - Part-2
Lecture 32 - High dynamic performance of IM Drive
Lecture 33 - Dynamic Model of Induction Motor - Part-1
Lecture 34 - Dynamic Model of Induction Motor - Part-2
Lecture 35 - Vector Control of Induction Motor
Lecture 36 - Effect of Switching Time lag in Inverter
Lecture 37 - Power Switch Protection - Snubbers
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC:Design for Internet of Things

Subject Co-ordinator - Prof. T.V. Prabhakar

Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to IOTs - Part I
Lecture 2 - Introduction to IOTs - Part II
Lecture 3 - Introduction to IOTs - Examples
Lecture 4 - IOT applications - I
Lecture 5 - IOT applications - II
Lecture 6 - Power management in IOT device
Lecture 7 - Introduction to LDO
Lecture 8 - Design with an LDO
Lecture 9 - Introduction to switching regulators
Lecture 10 - Designing with LDO's, switching regulators and case studies - Part I
Lecture 11 - Designing with LDO's, switching regulators and case studies - Part II
Lecture 12 - Designing with LDO's, switching regulators and case studies - Part II
Lecture 13 - Designing with LDO's, switching regulators and case studies - Part IV
Lecture 14 - Power Conditioning with Energy Harvesters - I
Lecture 15 - Power Conditioning with Energy Harvesters - II
Lecture 16 - Power Conditioning with Energy Harvesters - III
Lecture 17 - Battery less power supply and battery life calculation for embedded devices - I
Lecture 18 - Battery less power supply and battery life calculation for embedded devices - II
Lecture 19 - Battery less power supply and battery life calculation for embedded devices - III
Lecture 20 - Introduction to MQTT
Lecture 21 - Quality of Service in MQTT
Lecture 22 - Standards and Security in MQTT
Lecture 23 - Introduction and Implementation of AMQP
Lecture 24 - Implementation of CoAP and MDNS
Lecture 25 - Basics of RFID
Lecture 26 - RFID protocol and applications
Lecture 27 - BLE Security
Lecture 28 - LPWAN technologies
Lecture 29 - Choice of Microcontrollers

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Case Study 1 - Joule Jotter
Lecture 31 - Case Study 2 - Cloud Based Systems
NPTEL Video Course - Electrical Engineering - NOC: Advances in UHV Transmission and Distribution

Subject Co-ordinator - Prof Subba Reddy B
Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Advantages of HVAC/DC Transmission, Introduction to Grid Management
Lecture 2 - Transmission system development, Important components of transmission system
Lecture 3 - Insulation coordination, over voltage in power systems
Lecture 4 - Design/selection of insulators, Importance of grading/cc rings
Lecture 5 - Non ceramic insulators performance-service experience
Lecture 6 - Failure of apparatus in the field, importance of reliability and testing
Lecture 7 - Pollution flashover phenomena, modeling etc
Lecture 8 - Planning of High Voltage laboratories
Lecture 9 - Importance of High Voltage testing and techniques employed
Lecture 10 - Basic philosophy of HV testing, tests for various HV apparatus
Lecture 11 - HV testing techniques for various apparatus
Lecture 12 - HV testing on Composite Insulators
Lecture 13 - Surface degradation studies on composite insulators
Lecture 14 - Surface morphological techniques for composite insulators
Lecture 15 - Conductors used for EHV/UHV transmission
Lecture 16 - Corona nad interference on transmission lines
Lecture 17 - Introduction of HTLS conductors and their advantages
Lecture 18 - Mechanical considerations for HV conductors
Lecture 19 - Introduction to Towers and importance of foundations
Lecture 20 - Selection/Design of clearances for HV towers
Lecture 21 - Design Optimization for UHV towers
Lecture 22 - Introduction to 1100kV HVDC
Lecture 23 - Introduction to HV Substations
Lecture 24 - Types of Substations, comparison
Lecture 25 - Insulation coordination, Components in a typical substation
Lecture 26 - Preventive maintenance of Substation
Lecture 27 - Electric and magnetic fields, mitigations techniques
Lecture 28 - Importance of Grounding, reducing Earthing resistance
Lecture 29 - Introduction to the use of Fiber optic cables, OPGW

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
<table>
<thead>
<tr>
<th>Lecture 30</th>
<th>Introduction to communication and SCADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 31</td>
<td>Precautions and safety measures in substation</td>
</tr>
<tr>
<td>Lecture 32</td>
<td>Electrical hazards, minimum clearances in substation</td>
</tr>
<tr>
<td>Lecture 33</td>
<td>Importance of Generation of HVDC in the laboratory</td>
</tr>
<tr>
<td>Lecture 34</td>
<td>Importance of Generation of HVAC, Impulse Voltage and Currents in the laboratory</td>
</tr>
<tr>
<td>Lecture 35</td>
<td>Measurements of High Voltages</td>
</tr>
<tr>
<td>Lecture 36</td>
<td>Measurements of High Voltages (Continued...)</td>
</tr>
<tr>
<td>Lecture 37</td>
<td>Introduction to digital recorders, measurement</td>
</tr>
<tr>
<td>Lecture 38</td>
<td>Upgradation/uprating of transmission lines- advantages</td>
</tr>
<tr>
<td>Lecture 39</td>
<td>Upgradation/uprating of transmission lines- advantages (Continued...)</td>
</tr>
<tr>
<td>Lecture 40</td>
<td>Summary of the course</td>
</tr>
</tbody>
</table>
NPTEL Video Course - Electrical Engineering - NOC: Mathematical Methods and Techniques in Signal Processing

Subject Co-ordinator - Prof. Shayan Srinivasa Garani
Co-ordinating Institute - IISc - Bangalore
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to signal processing
Lecture 2 - Basics of signals and systems
Lecture 3 - Linear time-invariant systems
Lecture 4 - Modes in a linear system
Lecture 5 - Introduction to state space representation
Lecture 6 - State space representation
Lecture 7 - Non-uniqueness of state space representation
Lecture 8 - Introduction to vector space
Lecture 9 - Linear independence and spanning set
Lecture 10 - Unique representation theorem
Lecture 11 - Basis and cardinality of basis
Lecture 12 - Norms and inner product spaces
Lecture 13 - Inner products and induced norm
Lecture 14 - Cauchy Schwartz inequality
Lecture 15 - Orthonormality
Lecture 16 - Problem on sum of subspaces
Lecture 17 - Linear independence of orthogonal vectors
Lecture 18 - Hilbert space and linear transformation
Lecture 19 - Gram Schmidt orthonormalization
Lecture 20 - Linear approximation of signal space
Lecture 21 - Gram Schmidt orthogonalization of signals
Lecture 22 - Problem on orthogonal complement
Lecture 23 - Problem on signal geometry (4-QAM)
Lecture 24 - Basics of probability and random variables
Lecture 25 - Mean and variance of a random variable
Lecture 26 - Introduction to random process
Lecture 27 - Statistical specification of random processes
Lecture 28 - Stationarity of random processes
Lecture 29 - Problem on mean and variance

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimati.net
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

Lecture 30 - Problem on MAP Detection
Lecture 31 - Fourier transform of dirac comb sequence
Lecture 32 - Sampling theorem
Lecture 33 - Basics of multirate systems
Lecture 34 - Frequency representation of expanders and decimators
Lecture 35 - Decimation and interpolation filters
Lecture 36 - Fractional sampling rate alterations
Lecture 37 - Digital filter banks
Lecture 38 - DFT as filter bank
Lecture 39 - Noble Identities
Lecture 40 - Polyphase representation
Lecture 41 - Efficient architectures for interpolation and decimation filters
Lecture 42 - Problems on simplifying multirate systems using noble identities
Lecture 43 - Problem on designing synthesis bank filters
Lecture 44 - Efficient architecture for fractional decimator
Lecture 45 - Multistage filter design
Lecture 46 - Two-channel filter banks
Lecture 47 - Amplitude and phase distortion in signals
Lecture 48 - Polyphase representation of 2-channel filter banks, signal flow graphs and perfect reconstruction
Lecture 49 - M-channel filter banks
Lecture 50 - Polyphase representation of M-channel filter bank
Lecture 51 - Perfect reconstruction of signals
Lecture 52 - Nyquist and half band filters
Lecture 53 - Special filter banks for perfect reconstruction
Lecture 54 - Introduction to wavelets
Lecture 55 - Multiresolution analysis and properties
Lecture 56 - The Haar wavelet
Lecture 57 - Structure of subspaces in MRA
Lecture 58 - Haar decomposition - 1
Lecture 59 - Haar decomposition - 2
Lecture 60 - Wavelet Reconstruction
Lecture 61 - Haar wavelet and link to filter banks
Lecture 62 - Demo on wavelet decomposition
Lecture 63 - Problem on circular convolution
Lecture 64 - Time frequency localization
Lecture 65 - Basic analysis
Lecture 66 - Basic Analysis
Lecture 67 - Fourier series and notions of convergence
Lecture 68 - Convergence of Fourier series at a point of continuity

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 69 - Convergence of Fourier series for piecewise differentiable periodic functions
Lecture 70 - Uniform convergence of Fourier series of piecewise smooth periodic function
Lecture 71 - Convergence in norm of Fourier series
Lecture 72 - Convergence of Fourier series for all square integrable periodic functions
Lecture 73 - Problem on limits of integration of periodic functions
Lecture 74 - Matrix Calculus
Lecture 75 - KL transform
Lecture 76 - Applications of KL transform
Lecture 77 - Demo on KL Transform
Lecture 78 - Live Session
Lecture 79 - Live Session 2
NPTEL Video Course - Electrical Engineering - NOC: Electronics Enclosures Thermal Issues

Subject Co-ordinator - Prof. N. V Chalapathi Rao

Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Electronic Equipment Thermal issues
Lecture 2 - Practical Examples - 1
Lecture 3 - Practical Examples - 2
Lecture 4 - CEDT worked examples - 1
Lecture 5 - CEDT worked examples - 2
Lecture 6 - Text book theory
Lecture 7 - Sample heat sinks
Lecture 8 - Published correlations - 1
Lecture 9 - Published correlations - 2
Lecture 10 - Parallel combined effects
Lecture 11 - Mounting of packages
Lecture 12 - Combined Rth of devices
Lecture 13 - Schonholzer modsuls
Lecture 14 - 1972 model paper
Lecture 15 - Jensen model
Lecture 16 - Thermal management - 1
Lecture 17 - Thermal management - 2
Lecture 18 - Round up of full model
Lecture 19 - Fan cooling
Lecture 20 - Thermo-electric cooling
Lecture 21 - On-the-net DIY work
Lecture 22 - Practical video
Lecture 23 - Lecture 23
Lecture 24 - Lecture 24
Lecture 25 - Lecture 25
Lecture 26 - Lecture 26
Lecture 27 - Real packages
Lecture 28 - Prior art
Lecture 29 - OTS standard profiles

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - CAD detailed design of profiles
Lecture 31 - Round up
Lecture 32 - 4X Peltier Cooler
Lecture 33 - Manufacturing Video
Lecture 34 - Peltier heat sink
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC: Integrated Circuits, MOSFETs, Op-Amps and their Applications

Subject Co-ordinator - Prof. Hardik Jeetendra Pandya
Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Integrated Circuits (IC) Technology
Lecture 2 - Introduction to fabrication of IC
Lecture 3 - Introduction to IC fabrication
Lecture 4 - Introduction to IC fabrication (Continued...)
Lecture 5 - Introduction to the fabrication of sensors
Lecture 6 - Introduction to fabrication technology
Lecture 7 - Introduction to fabrication technology (Continued...)
Lecture 8 - Introduction to fabrication technology (Continued...)
Lecture 9 - Introduction to fabrication technology (Continued...)
Lecture 10 - Introduction to fabrication technology (Continued...)
Lecture 11 - Process flow for Fabrication of MOSFETs
Lecture 12 - Operation of Enhancement type MOSFET
Lecture 13 - Operation of Depletion type MOSFET
Lecture 14 - MOSFETs Characteristics and Applications (Current Mirrors)
Lecture 15 - Introduction to Operational Amplifiers
Lecture 16 - Operational Amplifier Characteristics
Lecture 17 - Operational Amplifier Characteristics (Continued...)
Lecture 18 - Characteristics of an op-amp (Continued...)
Lecture 19 - Operational Amplifier Configarations
Lecture 20 - Operational Amplifier Configarations (Continued...)
Lecture 21 - Applications of Operational Amplifier
Lecture 22 - Applications of Operational Amplifier
Lecture 23 - Applications of Operational Amplifier
Lecture 24 - Introduction to Passive and Active Filters and op-amp as Low Pass Filter
Lecture 25 - Operational Amplifier as a High Pass Filter
Lecture 26 - Operational Amplifier as a Band Pass and Band Reject Filter
Lecture 27 - Introduction to Oscillator
Lecture 28 - RC Phase Shift Oscillator using Op-amp
Lecture 29 - Wein Bridge Oscillator using Op-amp

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Hartley and Colpitts Oscillator using Op-amp
Lecture 31 - Working of Crystal Oscillators
Lecture 32 - Construction and Operation of UJT Relaxation Oscillators
Lecture 33 - Introduction to Noise and its Types
Lecture 34 - Analysis of Data Sheets of an Op-Amp
Lecture 35 - Analysis of Data Sheets of an Op-Amp (Continued...)
Lecture 36 - Analysis of Data Sheets of an Op-Amp (Continued...)
Lecture 37 - Experiment - Introduction to Laboratory Equipment
Lecture 38 - Experiment - Measurement of Active and Passive elements using Multimeter
Lecture 39 - Experiment - Working with Laboratory Equipment
Lecture 40 - Experiment - Working with Laboratory Equipment
Lecture 41 - Experiment - Op-Amp Characteristics
Lecture 42 - Experiment - Op-Amp Characteristics
Lecture 43 - Experiment - Op-Amp Characteristics
Lecture 44 - Experiment - Op-Amp as Inverting Amplifier
Lecture 45 - Experiment - Op-Amp as Non-Inverting Amplifier
Lecture 46 - Experiment - To study input and output voltage range of an Op-Amp
Lecture 47 - Experiment - Differential amplifier using op-amp
Lecture 48 - Experiment - To study the gain of instrumentation amplifier
Lecture 49 - Experiment - Summing amplifier using op-amp
Lecture 50 - Experiment - To study op-amp based comparator
Lecture 51 - Experiment - To study op-amp based integrator and differentiator
Lecture 52 - Experiment - Study of passive low pass filter
Lecture 53 - Experiment - Op-amp based active low pass filter
Lecture 54 - Experiment - Passive and active high pass filter
Lecture 55 - Experiment - Introduction to experimental set-up of band pass filter
Lecture 56 - Experiment - Passive and active band pass filter
Lecture 57 - Experiment - Introduction to experimental set-up for band reject filter
Lecture 58 - Experiment - Active band reject filter
Lecture 59 - Experiment - Peak detector circuit using Op-Amp

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimatr.in
Lecture 30 - BJT
Lecture 31 - BJT
Lecture 32 - Metal Oxide Semiconductor Capacitor (MOSCAP)
Lecture 33 - MOSCAP (Continued...)
Lecture 34 - MOSCAP
Lecture 35 - MOSCAP
Lecture 36 - MOSFET
Lecture 37 - MOSFET
Lecture 38 - MOSFET
Lecture 39 - MOSFET
Lecture 40 - Subthreshold swing, Additional concepts
Lecture 41 - Trapped charge, Body-bias
Lecture 42 - Scaling of MOSFETs
Lecture 43 - Scaling of MOSFETs (Continued...), Leakage currents in MOSFETs
Lecture 44 - MOSFET characterization
Lecture 45 - MOSFET characterization
Lecture 46 - MOSFET as a switch
Lecture 47 - MOSFET as a switch (Continued...)
Lecture 48 - Amplifiers using MOSFET
Lecture 49 - Amplifiers using MOSFET (Continued...)
Lecture 50 - Circuits
Lecture 51 - Introduction
Lecture 52 - Thin Film Transistors
Lecture 53 - Tutorials Session - 1
Lecture 54 - Tutorials Session - 2
Lecture 55 - Tutorials Session - 3
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC:Op-Amp Practical Applications: Design, Simulation and Implementation

Subject Co-ordinator - Prof. Hardik Jeetendra Pandya
Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction/Summary on Op-amps
Lecture 2 - Introduction/Summary on Op-amps (Continued...)
Lecture 3 - Introduction/Summary on Op-amps (Continued...)
Lecture 4 - Effect of Loading and Input Impedance - Part 1
Lecture 5 - Effect of Loading and Input Impedance - Part 2
Lecture 6 - Effect of Loading and Input Impedance - Part 3
Lecture 7 - Effect of Loading and Input Impedance - Part 4
Lecture 8 - Introduction to an Analog Circuit Development Board (TI ASLK Pro)
Lecture 9 - Op-amp Applications
Lecture 10 - Op-amp Applications
Lecture 11 - Op-amp Applications
Lecture 12 - Op-amp Circuits using Diodes
Lecture 13 - Understanding the Range of Feedback Amplifiers
Lecture 14 - Op-amps as Phase Shift Oscillator
Lecture 15 - Op-amp as Wein Bridge Oscillator
Lecture 16 - Op-amp as Hartley Oscillator
Lecture 17 - Op-amp as Colpitts Oscillator
Lecture 18 - Op-amps as Comparator
Lecture 19 - Op-amp with Positive Feedback
Lecture 20 - Op-amp with Positive Feedback
Lecture 21 - Op-amp with Positive Feedback
Lecture 22 - Op-amp with Positive Feedback
Lecture 23 - Op-amp based Voltage Controlled Current Source
Lecture 24 - Measure of Unknown Resistance by Constant Current Drive Circuit Implemented using Op-amp
Lecture 25 - Design and Development of Temperature Controlled Circuit using Op-amp as ON-OFF, Proportional and PI Controllers
Lecture 26 - Implementation of Error Detector Circuit and Signal Conditioning Circuit for Temperature Control
Lecture 27 - Implementation of Plant/Heating Circuit and ON-OFF Controller
Lecture 28 - Implementation of P and PI Controllers
Lecture 29 - Experiment on Controlling the Temperature on the Plant using different Controllers

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Experiment
Lecture 31 - Introduction to ECG Experiment
Lecture 32 - Desing and Implementation of ECG Preprocessing Stage - Part 1
Lecture 33 - Desing and Implementation of ECG Preprocessing Stage - Part 2
Lecture 34 - Desing and Implementation of ECG Preprocessing Stage - Part 3
Lecture 35 - Desing and Implementation of ECG Preprocessing Stage - Part 4
Lecture 36 - Desing and Implementation of Peak Detetor and Thresholding Circuit for ECG Signal Conditioning
Lecture 37 - Live Demonstration on ECG Signal Acquisition, Conditioning and Measurement of BPM
Lecture 38 - Understanding Analog Multipliers using Development Board
Lecture 39 - Application
Lecture 40 - Introduction to Data-Acquisition
Lecture 41 - Analog to Digital Conversion Circuits and Experiment on 2-bit Flash Type ADC
Lecture 42 - Digital to Analog Conversion Circuits and Experiment on 4-bit R-2R DAC
Lecture 43 - DAC Basics using Development Board - Introduction
Lecture 44 - Understanding DAC 7821 Datasheet
Lecture 45 - Basic DAC Experiment on Variable Gain Amplifier
Lecture 46 - Understanding DAC
Lecture 47 - Introduction to CDAQ (Compact DAQ)
Lecture 48 - Software-in-Loop based Temperature Controller using CDAQ and LabVIEW
NPTEL Video Course - Electrical Engineering - NOC:Physical Modelling for Electronics Enclosures using Rapid prototyping

Subject Co-ordinator - Prof. N. V Chalapathi Rao

Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Products prototyping
Lecture 2 - Prototype concepts
Lecture 3 - Physical simulation
Lecture 4 - Rapid Prototyping
Lecture 5 - Products detailing
Lecture 6 - Advantages of Design Modelling
Lecture 7 - Sample product concept
Lecture 8 - Product sample exercise 1
Lecture 9 - Exercise in product sample 2
Lecture 10 - Integration of components 1
Lecture 11 - Components integration in models
Lecture 12 - 3D printing detail 1
Lecture 13 - 3D printing detail 2
Lecture 14 - 3D print assembly design
Lecture 15 - Heat spreader to 3D print
Lecture 16 - Metallic, 3D, build up 1
Lecture 17 - 3D build up 2
Lecture 18 - 3D design 1 from Photo snap
Lecture 19 - 3D design 2 from Photo snap
Lecture 20 - 3D Laser cuts 1, prints
Lecture 21 - 3D Laser cuts 2, open source public prints
Lecture 22 - Demo of 3D Part print
Lecture 23 - Building a model 1
Lecture 24 - Building a model 2
Lecture 25 - Common place objects
Lecture 26 - Materials
Lecture 27 - Future 3D In biology
Lecture 28 - Product clamp variants
Lecture 29 - Product clamp build up
Lecture 30 - Multi direction features
Lecture 31 - Multi direction features (Continued...)
Lecture 32 - Fastening detail
Lecture 33 - Flat objects
Lecture 34 - Modularity
Lecture 35 - Creative design work
Lecture 36 - Creative designs
Lecture 37 - Using flat features
Lecture 38 - Organic shapes
Lecture 39 - Simulation for alternate use
NPTEL Video Course - Electrical Engineering - NOC: Recent Advances in Transmission Insulators

Subject Co-ordinator - Prof Subba Reddy B

Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Transmission and distribution Insulators
Lecture 2 - Manufacturing process for Ceramic/glass Insulators
Lecture 3 - Manufacturing process for Polymeric Insulators
Lecture 4 - Design Considerations of Transmission Insulators
Lecture 5 - Field experience of Ceramic/Glass and Polymeric Insulators
Lecture 6 - Comparison of Transmission Insulators
Lecture 7 - Environmental issues with transmission Insulators
Lecture 8 - Reliability and Philosophy of Testing
Lecture 9 - Testing of Ceramic, Glass and Composite Insulators
Lecture 10 - Cleaning methods adopted for Insulators
Lecture 11 - Cleaning methods adopted for Insulators (Continued...)
Lecture 12 - Coating techniques for Insulators
Lecture 13 - Introduction to Hybrid Insulators
Lecture 30 - MOS
Lecture 31 - MOS
Lecture 32 - Ideal MOS system
Lecture 33 - MOS C-V in more details
Lecture 34 - MOSFET - An introduction
Lecture 35 - Gradual Channel Approximation
Lecture 36 - Substrate bias effect and subthreshold conduction in MOSFET
Lecture 37 - Short Channel Effects in MOSFET
Lecture 38 - Introduction to compound semiconductors
Lecture 39 - Basics of heterojunctions
Lecture 40 - Band diagram of heterojunctions
Lecture 41 - Heterojunctions (Continued...)
Lecture 42 - Heterojunction transistors
Lecture 43 - III-nitrides
Lecture 44 - Solar cell basics
Lecture 45 - Solar cell (Continued...)
Lecture 46 - Solar cell
Lecture 47 - Basics of photodetectors
Lecture 48 - Photodetectors
Lecture 49 - Junction photodetectors
Lecture 50 - Basics of recombination
Lecture 51 - Basics of LED
Lecture 52 - LED
Lecture 53 - Visible LED
Lecture 54 - Transistors for power electronics
Lecture 55 - Transistors for power electronics (Continued...) and for RF electronics
Lecture 56 - Transistors for RF (Continued...) and transistors for Memory
Lecture 57 - Basics of microelectronic fabrication
Lecture 58 - Microelectronic fabrication (Continued...)
Lecture 59 - Summary
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC:Advanced IOT Applications

Subject Co-ordinator - Prof. T V Prabhakar
Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Overview of localization using IoT sensors
Lecture 2 - Outdoor localization without GPS - I
Lecture 3 - Outdoor localization without GPS - II
Lecture 4 - Outdoor localization using elevation - pressure mapping
Lecture 5 - Localization using IMU sensors - I
Lecture 6 - Localization using IMU sensors - II
Lecture 7 - Localization using IMU sensors - III
Lecture 8 - RFID based localization - I
Lecture 9 - RFID based localization - II
Lecture 10 - Simulation of simple algorithms for object detection
Lecture 11 - Building smart vehicle for collision avoidance
Lecture 12 - Basic computer vision algorithms - Part 1
Lecture 13 - Basic computer vision algorithms - Part 2
Lecture 14 - Code walkthrough of computer vision algorithm
Lecture 15 - Introduction to LiDAR
Lecture 16 - Range estimation and Obstacle avoidance
Lecture 17 - Introduction to vehicle platooning
Lecture 18 - Building blocks for autonomous vehicles - 1
Lecture 19 - Building blocks for autonomous vehicles - 2
Lecture 20 - On Board Diagnostics and protocols
Lecture 21 - Diagnostic services and fuel-injection ratio control unit
Lecture 22 - Real time event processing and Anomaly detection
Lecture 23 - OBD-II and stream processing demonstration
Lecture 24 - Speech recognition - Part 1
Lecture 25 - Speech recognition - Part 2
Lecture 26 - Speech recognition - Part 3
Lecture 27 - Speech recognition - Part 4
Lecture 28 - Device Security - Part 1
Lecture 29 - Device Security - Part 2

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Electrical Engineering - NOC:Electronic Systems for Cancer Diagnosis

Subject Co-ordinator - Prof. Hardik Jeetendra Pandya
Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Tissue and Cell Culture Techniques
Lecture 2 - Tissue and Cell Culture Techniques
Lecture 3 - Tissue and Cell Culture Techniques
Lecture 4 - Cleanroom Equipments
Lecture 5 - Cleanroom Equipments (Continued...)
Lecture 6 - Introduction to photolithography
Lecture 7 - Photolithography
Lecture 8 - Photolithography
Lecture 9 - Micromachining Techniques
Lecture 10 - Breast Cancer and Oral Cancer Statistics
Lecture 11 - Fabrication of MEMs-based Biochip for cancer diagnosis
Lecture 12 - Fabrication of MEMs-based Biochip for cancer diagnosis (Continued...)
Lecture 13 - Fabrication of Piezoresistive Sensor
Lecture 14 - Fabrication of Piezoresistive Sensor (Continued...)
Lecture 15 - Fabrication of SU-8 pillar on piezoresistive Sensor
Lecture 16 - Portable Cancer Diagnostic Tool Using a Disposable MEMS-Based Biochip
Lecture 17 - Mechanical Phenotyping of Breast Cancer using MEMS
Lecture 18 - Electrical characterization of Breast Tissue Cores
Lecture 19 - Fabrication of MEMS-based sensor for electro-mechanical phenotyping of breast cancer
Lecture 20 - Fabrication of electro-mechanical sensor (Continued...)
Lecture 21 - Assemby of the electro-mechanical sensor
Lecture 22 - Silicon substrate devices for breast cancer diagnosis
Lecture 23 - Understanding the methods and mechanism to study cell morphology
Lecture 24 - Cytology - A detail study on Spin Coater and Cytospin
Lecture 25 - Techniques in oral cytology studies
Lecture 26 - Techniques in cell morphology analysis
Lecture 27 - Comparitive study on diagnostic tools for oral cancer screening
Lecture 28 - Basic building blocks of Electronics System
Lecture 29 - Basic building blocks of Electronics System

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Basic building blocks of Electronics System
Lecture 31 - Basic building blocks of Electronics System
Lecture 32 - Basic building blocks of Electronics System
Lecture 33 - Basic building blocks of Electronics System
Lecture 34 - Basic building blocks of Electronics System
Lecture 35 - Basic building blocks of Electronics System
Lecture 36 - Basic building blocks of Electronics System
Lecture 37 - Etching Process and Figure of Merits
Lecture 38 - ECG Signal Processing to calculate BPM
Lecture 39 - ECG Signal Processing to calculate BPM (Continued...)
Lecture 40 - ECG Signal Processing to calculate BPM (Continued...)
Lecture 41 - ECG Signal Processing to calculate BPM (Continued...)
Lecture 42 - ECG Signal Processing to calculate BPM (Continued...)
Lecture 43 - ECG Signal Processing to calculate BPM (Continued...)
Lecture 44 - MEMS based Force Sensor for Catheter Contact Force Measurement
Lecture 45 - 3D Printing
Lecture 46 - 3D Fabrication Techniques
Lecture 47 - Gowning Procedure in Clean Room
Lecture 48 - Introduction to Equipments
Lecture 49 - PDMS Moulding procedure
Lecture 50 - Introduction to Equipments
Lecture 51 - Introduction to Equipments
Lecture 52 - Micromanipulator
Lecture 53 - Biosafety Cabinet and Ultrasonicbath
Lecture 54 - Incubator Shaker
Lecture 55 - Hotplate and Microcentrifuge
Lecture 56 - Autoclave
Lecture 57 - Impedance Analyser
Lecture 58 - Rapid Prototyping using 3D Printer
Lecture 59 - Etching Process
Lecture 60 - Electronic System for Drug Screening
Lecture 61 - Introduction to Equipments
Lecture 62 - Introduction to Equipments
Lecture 63 - Electronic Module for Gas sensor
Lecture 64 - Fabrication process flow for a metal oxide gas sensor
Lecture 65 - MEMS Simulation using Comsol Multiphysics
Lecture 66 - Introduction to COMSOL Multiphysics
Lecture 67 - COMSOL Examples for MEMS Applications
Lecture 68 - COMSOL Examples for MEMS Applications (Continued...)

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 69 - Demonstration of Thermal Actuator and Understanding of Application Builder
Lecture 70 - Closed loop control of temperature sensor
Lecture 71 - Experimental Set-up of closed loop control of temperature sensor
NPTEL Video Course - Electrical Engineering - NOC:Electronic Modules for Industrial Applications using Op-Amps

Subject Co-ordinator - Prof. Hardik Jeetendra Pandya

Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Op-amp
Lecture 2 - Introduction Wafer Manufacturing Process and Clean room Protocols
Lecture 3 - Introduction to Fabrication Process Technology and Op-amp
Lecture 4 - Op-amp Characteristics and Datasheet Parameters
Lecture 5 - Overview of Active Filters and Oscillators
Lecture 6 - Overview of Op-amp Oscillators
Lecture 7 - Introduction to ECG Experiment
Lecture 8 - Design and Implementation of ECG Preprocessing Stage - Part 1
Lecture 9 - Design and Implementation of ECG Preprocessing Stage - Part 2
Lecture 10 - Design and Implementation of ECG Preprocessing Stage - Part 3
Lecture 11 - Design and Implementation of ECG Preprocessing Stage - Part 4
Lecture 12 - Design and Implementation of Peak Detector and Thresholding Circuit for ECG Signal Conditioning
Lecture 13 - Experiment
Lecture 14 - Application
Lecture 15 - Photolithography
Lecture 16 - Understanding the process of photolithography
Lecture 17 - Photolithography
Lecture 18 - Photolithography
Lecture 19 - Fabrication of Piezoresistive Sensor
Lecture 20 - Fabrication of MEMS based Catheter Contact Force Sensor
Lecture 21 - Design of Speed Control of DC Motor
Lecture 22 - Design of Speed Control of DC Motor
Lecture 23 - Design of Speed Control of DC Motor
Lecture 24 - Design of Speed Control of DC Motor
Lecture 25 - Design of Speed Control of DC Motor
Lecture 26 - Design of Speed Control of DC Motor
Lecture 27 - Design of Speed Control of DC Motor
Lecture 28 - Design of Speed Control of DC Motor
Lecture 29 - Design of Speed Control of a DC Motor using Op-amp

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in