NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

```
NPTEL Video Course - Physics - NOC: Advanced NMR Techniques in Solution and Solid-State
Subject Co-ordinator - Prof. N. Suryaprakash
Co-ordinating Institute - IISc - Bangalore
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable
Lecture 1 - Introduction to NMR
Lecture 2 - NMR concepts and spin physics - I
Lecture 3 - NMR concepts and spin physics - II
Lecture 4 - Internal interaction parameters and chemical shifts
Lecture 5 - Chemical shifts
Lecture 6 - Scalar couplings
Lecture 7 - Multiplicity patterns of coupled spins and analysis of 1H NMR spectrum
Lecture 8 - Multiplicity pattern and analysis of NMR spectra - II
Lecture 9 - Analysis of NMR spectra and their analysis
Lecture 10 - Heteronuclear NMR
Lecture 11 - Introduction to Fourier series
Lecture 12 - Complex form of Fourier series
Lecture 13 - Fourier theorems
Lecture 14 - Fourier transformation in NMR
Lecture 15 - Pople notation, construction of spin Hamiltonian
Lecture 16 - Quantum mechanical analysis of AX spectra
Lecture 17 - Quantum mechanical analysis of AB spin system
Lecture 18 - Quantum mechanical analysis of coupled spin systems
Lecture 19 - RF pulses and their phases
Lecture 20 - Receiver phase and phase cycling
Lecture 21 - Evolution of chemical shift
Lecture 22 - Evolution of J couplings: polarization transfer
Lecture 23 - selective saturation in homo and heteronuclear spin systems, coupled anddecoupled INEPT
Lecture 24 - INEPT and DEPT
Lecture 25 - Coherence transfer pathway
Lecture 26 - Examples of coherence pathway selection
Lecture 27 - Pulse field gradients - I
Lecture 28 - Pulse field gradients - II
Lecture 29 - Selective excitation, selective inversion
```

Get DIGIMAT For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

Lecture 30 - Relaxation phenomenon Lecture 31 - T1 relaxation concepts and measurements Lecture 32 - Spectral density function and relaxation mechanisms Lecture 33 - T1 Relaxation mechanisms Lecture 34 - T1 Relaxation mechanisms and T2 relaxation Lecture 35 - Measurement of T1 and T2 Lecture 36 - Decoupling and NOE concepts Lecture 37 - DQ and ZQ relaxation pathways Lecture 38 - Positive and Negative NOE and spectral density functions Lecture 39 - NOE and correlation time Lecture 40 - Product operators Lecture 41 - Product operator analysis Lecture 42 - Productor operator analysis of pulse sequences Lecture 43 - Product operators for two J coupled spins Lecture 44 - Spin echo sequences Lecture 45 - Introduction to 2D NMR Lecture 46 - 2D NMR concepts, 2D experiments Lecture 47 - 2D COSY experiment Lecture 48 - 2D COSY and its variants Lecture 49 - TOCSY Heteronuclear 2D experiments Lecture 50 - coupled and decoupled HSQC, HMBC, INADEQUATE, 2D Jresolved Lecture 51 - Introduction to multiple quantum NMR Lecture 52 - DO and ZO of coupled spins Lecture 53 - MO and relative signs of couplings Lecture 54 - MO and spin system filtering Lecture 55 - Introduction to solid state NMR Lecture 56 - CSA and dipolar couplings Lecture 57 - Magic Angle Spinning Lecture 58 - WAHUHA and Cross Polarization Lecture 59 - Cross Polarization Lecture 60 - CP at high speeds, Side band suppression, TOSS