Lecture 1 - Intoduction Lecture 2 - Crystal geometry Lecture 3 - Unit cell Lecture 4 - Classification of lattices Lecture 5 - Gaps in Bravais lattice list Lecture 6 - Symmetry - I Lecture 7 - Symmetry - II Lecture 8 - Classification of lattices on the basis of symmetry Lecture 9 - A symmetry based approach to Bravais lattices Lecture 10 - Miller indices of directions Lecture 11 - Miller indices for planes Lecture 12 - Miller indices for plane and its normal in Cubic Crystal Lecture 13 - Weiss Zone law and its applications Lecture 14 - Inter-planar spacing Lecture 15 - Bragg’s Law Lecture 16 - Close-packing of hard spheres Lecture 17 - Hexagonal Close-Packed (HCP) structure Lecture 18 - Lattice and motif of HCP crystals Lecture 19 - c/a ratio of an ideal HCP crystal Lecture 20 - ABCABC stacking of close-packed spheres Lecture 21 - Voids in close-packed structures Lecture 22 - Solid solutions - I Lecture 23 - Solid solutions - II Lecture 24 - Hume-Rothery rules Lecture 25 - Ordered and disordered solid solutions Lecture 26 - Graphene Lecture 27 - Structure of graphite Lecture 28 - Structure of diamond Lecture 29 - Carbon nanotubes (CNT) Lecture 30 - Buckminsterfullerene (C60) Lecture 31 - Ionic solids Lecture 32 - NaCl Lecture 33 - CsCl Lecture 34 - ZnS Lecture 35 - BCC vs CsCl Lecture 36 - Amorphous Solids Lecture 37 - Polymers Lecture 38 - Vinyl Polymers Lecture 39 - Thermoplasts and Thermosets Lecture 40 - Tacticity Lecture 41 - Copolymers Lecture 42 - Crystallinity in Polymers Lecture 43 - Defects in Crystals Lecture 44 - Vacancies Lecture 45 - Edge dislocation: Half plane Lecture 46 - Edge dislocation: Slip Lecture 47 - Characteristic vectors of a dislocation Lecture 48 - Edge, screw and mixed dislocations Lecture 49 - Screw dislocations Lecture 50 - Burgers circuit Lecture 51 - Elastic energy of a dislocation line Lecture 52 - Burgers vector: Shortest lattice translation Lecture 53 - Burgers vector of a dislocation is constant along the line Lecture 54 - Geometrical properties of a dislocations: Dislocation cannot end abruptly in a crystal: Free surface Lecture 55 - Dislocation cannot end abruptly in a crystal: Grain boundaries Lecture 56 - Dislocation cannot end abruptly in a crystal: Dislocation nodes Lecture 57 - Dislocation cannot end abruptly in a crystal: Dislocation loop Lecture 58 - Dislocation motion Lecture 59 - 2D defects: Surfaces or interfaces Lecture 60 - Free surface or external surface of the crystal Lecture 61 - Stacking faults Lecture 62 - Twin boundary Lecture 63 - Grain boundary Lecture 64 - Small angle symmetric tilt boundary Lecture 65 - Ball bearing model Lecture 66 - Phase diagrams: Introduction Lecture 67 - Phases and components Lecture 68 - Uses of phase diagrams Lecture 69 - Phases present in the system Lecture 70 - Composition of phases present in the system Lecture 71 - Proportion of phases present in the system Lecture 72 - Microstructure evolution during solidification in isomorphous systems Lecture 73 - Eutectic system Lecture 74 - Eutectic reaction Lecture 75 - Eutectic, hypoeutectic and hypereutectic alloys Lecture 76 - Gibbs’ phase rule Lecture 77 - Fe-C phase diagram Lecture 78 - Eutectoid, hypoeutectoid and hypereutectoid steels Lecture 79 - Microstructure of a hypoeutectoid steel Lecture 80 - Microstructure of a hypereutectoid steel Lecture 81 - Diffusion: Introduction Lecture 82 - Fick’s first law Lecture 83 - Fick’s second law Lecture 84 - Error function solution of Fick’s second law Lecture 85 - Atomic mechanisms of diffusion Lecture 86 - Substitutional diffusion revisited Lecture 87 - Diffusion paths Lecture 88 - Steady and unsteady state diffusion Lecture 89 - Phase Transformation Lecture 90 - Nucleation Lecture 91 - Nucleation and capillary rise Lecture 92 - Nucleation, growth and overall transformation Lecture 93 - Time-temperature-transformation (TTT) diagram Lecture 94 - Homogeneus and heterogeneous nucleation Lecture 95 - Heat treatment of steels Lecture 96 - TTT diagram of Eutectoid Steels Lecture 97 - Quenching and martensite Lecture 98 - Austempering and bainite Lecture 99 - Tempering Lecture 100 - Residual stresses and Quench cracks Lecture 101 - Marquenching and martempering Lecture 102 - TTT diagram of hypoeutectoid and hypereutectoid steels Lecture 103 - TTT diagram of alloy steel Lecture 104 - hardenability of steels Lecture 105 - Glass Ceramics Lecture 106 - Tensile test Lecture 107 - Plastic deformation and crystal structure Lecture 108 - Shape change Lecture 109 - Slip Lecture 110 - Resolved shear stress Lecture 111 - CRSS Lecture 112 - Schmid's law Lecture 113 - CRSS:Theory vs experiment Lecture 114 - Why is experimental CRSS less than theoretical CRSS Lecture 115 - Strengthening mechaniksms Lecture 116 - Dislocation density Lecture 117 - Frank-Read source Lecture 118 - strain hardening Lecture 119 - Dislocation interaction leading to strain hardening - I Lecture 120 - Dislocation interaction leading to strain hardening - II Lecture 121 - Solid solution hardening Lecture 122 - Grain size hardening Lecture 123 - Age hardening - I Lecture 124 - Age hardening - II Lecture 125 - Metastable precipitates Lecture 126 - Annealing of cold-worked metals Lecture 127 - Recovery Lecture 128 - Recrystallization Lecture 129 - Grain Growth Lecture 130 - True stress and true strain Lecture 131 - Creep Lecture 132 - Effect of stress and temperature on creep Lecture 133 - Creep Mechanisms Lecture 134 - Composites Lecture 135 - Isostrain modulus Lecture 136 - Isostress modulus Lecture 137 - Fracture Lecture 138 - Ductile and Brittle Fracture Lecture 139 - Role of crack size Lecture 140 - Griffith's Criterion Lecture 141 - Stress Concentration Lecture 142 - Ductile to brittle transition Lecture 143 - Enhancing fracture resistance Lecture 144 - Toughening of glass: Tempering Lecture 145 - Toughening of glass: Ion-Exchange Lecture 146 - Fatigue Lecture 147 - Sub-Critical crack growth