NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

```
NPTEL Video Course - Chemistry and Biochemistry - NOC: Time Dependent Quantum Chemistry
Subject Co-ordinator - Prof. Atanu Bhattacharya
Co-ordinating Institute - IISc - Bangalore
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable
Lecture 1 - Introduction to TDSE
Lecture 2 - Solution to TDSE, Stationary and Non-stationary States
Lecture 3 - Electron and Vibrational Superposition States
Lecture 4 - Optical Analogy to Quantum Superposition
Lecture 5 - Introdution to Python Programming
Lecture 6 - Simple Computation with Python Programming
Lecture 7 - Plotting Graph with Python Programming
Lecture 8 - Meaning of Probability Density
Lecture 9 - Time Evolution of Normalization Constant
Lecture 10 - Expectation Value and its Time Evolution
Lecture 11 - Equation of Continuity
Lecture 12 - Bohmian Mechanics
Lecture 13 - Bohmian Mechanics and Standard Interpretation
Lecture 14 - Grid Representation of Wavefunction
Lecture 15 - Normalizing the Discretized Wavefunction and Finding Expectation Value
Lecture 16 - Plane Matter Wave and Wavepacket
Lecture 17 - Wavepacket
Lecture 18 - Stationary Gaussian Wavepacket
Lecture 19 - Travelling Gaussian Wavepacket
Lecture 20 - General Form of the Gaussian Wavepacket
Lecture 21 - Fourer Transform of a wavefunction
Lecture 22 - x-grid to k-grid
Lecture 23 - Fourier Transform using fft
Lecture 24 - Hilbert Space and Its Properties
Lecture 25 - Basis Set Approach to Quantum Mechanics
Lecture 26 - Matrix Algebra
Lecture 27 - Eigenvalue and Eigenfunction
Lecture 28 - Matrix Representation of Operators
Lecture 29 - Matrix Representation of Hamiltonian Operator
```

Get DIGIMAT For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

```
Lecture 30 - Python Tutorial 4 (Eigenvalue and Eigenfunction)
Lecture 31 - Python Tutorial 4 (Eigenvalue and Eigenfunction)
Lecture 32 - Time Evolution Operator
Lecture 33 - Split Operator Metho
Lecture 34 - Numerical Implementation of Split Operator Method
Lecture 35 - Wavepacket Dynamics under zero interaction potential
Lecture 36 - Wavepacket Dynamics under zero interaction potential (Continued...)
Lecture 37 - Wavepacket Dynamics under linear interaction potential
Lecture 38 - Ouantum Adiabatic Theory
Lecture 39 - Formal Derivation of Ouantum Adiabat
Lecture 40 - Geometric Phase and Dynamical Phase
Lecture 41 - Nonradiative Transition - Part 1
Lecture 42 - Nonradiative Transition - Part 2
Lecture 43 - Nonradiative Transition
Lecture 44 - Quantum Dissipative Dynamics
Lecture 45 - Quantum Dissipative Dynamics
Lecture 46 - Formal Derivation of Dissipative Quantum Dynamics
Lecture 47 - Classical Description of Light
Lecture 48 - Vector and Scalar Potential
Lecture 49 - Vector and Scalar Potential
Lecture 50 - Master Equation of Light
Lecture 51 - Hamiltonian for Light-Atom Interaction
Lecture 52 - Hamiltonian for Light-Atom Interaction
Lecture 53 - Absorption and Stimulated Emission
Lecture 54 - Absorption and Stimulated Emission
Lecture 55 - Time Correlation Function
Lecture 56 - Fourier Transform of Time Correlation Function
```
